test_flash_mla.py 4.91 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import argparse
import math
import random

import torch
import triton
from flash_mla import flash_mla_with_kvcache, get_mla_metadata

"""
fork FlashMLA/tests/test_flash_mla.py
"""


def scaled_dot_product_attention(query, key, value, h_q, h_kv, is_causal=False):
    query = query.float()
    key = key.float()
    value = value.float()
    key = key.repeat_interleave(h_q // h_kv, dim=0)
    value = value.repeat_interleave(h_q // h_kv, dim=0)
    attn_weight = query @ key.transpose(-2, -1) / math.sqrt(query.size(-1))
    if is_causal:
        s_q = query.shape[-2]
        s_k = key.shape[-2]
        attn_bias = torch.zeros(s_q, s_k, dtype=query.dtype)
        temp_mask = torch.ones(s_q, s_k, dtype=torch.bool).tril(diagonal=s_k - s_q)
        attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
        attn_bias.to(query.dtype)
        attn_weight += attn_bias
    lse = attn_weight.logsumexp(dim=-1)
    attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32)
    return attn_weight @ value, lse


def cal_diff(x: torch.Tensor, y: torch.Tensor, name: str) -> None:
    x, y = x.double(), y.double()
    RMSE = ((x - y) * (x - y)).mean().sqrt().item()
    cos_diff = 1 - 2 * (x * y).sum().item() / max((x * x + y * y).sum().item(), 1e-12)
    amax_diff = (x - y).abs().max().item()
    # print(f"{name}: {cos_diff=}, {RMSE=}, {amax_diff=}")
    assert cos_diff < 1e-5


@torch.inference_mode()
def test_flash_mla(b, s_q, mean_sk, h_q, h_kv, d, dv, causal, varlen):
    print(
        f"{b=}, {s_q=}, {mean_sk=}, {h_q=}, {h_kv=}, {d=}, {dv=}, {causal=}, {varlen=}"
    )

    cache_seqlens = torch.full((b,), mean_sk, dtype=torch.int32)
    if varlen:
        for i in range(b):
            cache_seqlens[i] = max(random.normalvariate(mean_sk, mean_sk / 2), s_q)
    total_seqlens = cache_seqlens.sum().item()
    mean_seqlens = cache_seqlens.float().mean().int().item()
    max_seqlen = cache_seqlens.max().item()
    max_seqlen_pad = triton.cdiv(max_seqlen, 256) * 256
    # print(f"{total_seqlens=}, {mean_seqlens=}, {max_seqlen=}")

    q = torch.randn(b, s_q, h_q, d)
    block_size = 64
    block_table = torch.arange(
        b * max_seqlen_pad // block_size, dtype=torch.int32
    ).view(b, max_seqlen_pad // block_size)
    blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d)
    for i in range(b):
        blocked_k.view(b, max_seqlen_pad, h_kv, d)[i, cache_seqlens[i].item() :] = (
            float("nan")
        )
    blocked_v = blocked_k[..., :dv]

    tile_scheduler_metadata, num_splits = get_mla_metadata(
        cache_seqlens, s_q * h_q // h_kv, h_kv
    )

    def flash_mla():
        return flash_mla_with_kvcache(
            q,
            blocked_k,
            block_table,
            cache_seqlens,
            dv,
            tile_scheduler_metadata,
            num_splits,
            causal=causal,
        )

    def ref_mla():
        out = torch.empty(b, s_q, h_q, dv, dtype=torch.float32)
        lse = torch.empty(b, h_q, s_q, dtype=torch.float32)
        for i in range(b):
            begin = i * max_seqlen_pad
            end = begin + cache_seqlens[i]
            O, LSE = scaled_dot_product_attention(
                q[i].transpose(0, 1),
                blocked_k.view(-1, h_kv, d)[begin:end].transpose(0, 1),
                blocked_v.view(-1, h_kv, dv)[begin:end].transpose(0, 1),
                h_q=h_q,
                h_kv=h_kv,
                is_causal=causal,
            )
            out[i] = O.transpose(0, 1)
            lse[i] = LSE
        return out, lse

    out_flash, lse_flash = flash_mla()
    out_torch, lse_torch = ref_mla()
    cal_diff(out_flash, out_torch, "out")
    cal_diff(lse_flash, lse_torch, "lse")

    t = triton.testing.do_bench(flash_mla)
    FLOPS = s_q * total_seqlens * h_q * (d + dv) * 2
    bytes = (total_seqlens * h_kv * d + b * s_q * h_q * d + b * s_q * h_q * dv) * (
        torch.finfo(q.dtype).bits // 8
    )
    print(
        f"{t:.3f} ms, {FLOPS / 10 ** 9 / t:.0f} TFLOPS, {bytes / 10 ** 6 / t:.0f} GB/s"
    )


def main(torch_dtype):
    device = torch.device("cuda:0")
    torch.set_default_dtype(torch_dtype)
    torch.set_default_device(device)
    torch.cuda.set_device(device)
    torch.manual_seed(0)
    random.seed(0)

    h_kv = 1
    d, dv = 576, 512
    causal = True

    for b in [128]:
        for s in [4096, 8192]:
            for h_q in [16, 32, 64, 128]:  # TP = 8, 4, 2, 1
                for s_q in [1, 2]:  # MTP = 1, 2
                    for varlen in [False, True]:
                        test_flash_mla(b, s_q, s, h_q, h_kv, d, dv, causal, varlen)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--dtype",
        type=str,
        choices=["bf16", "fp16"],
        default="bf16",
        help="Data type to use for testing (bf16 or fp16)",
    )
    args = parser.parse_args()
    torch_dtype = torch.bfloat16
    if args.dtype == "fp16":
        torch_dtype = torch.float16
    main(torch_dtype)