bench_per_tensor_quant_fp8.py 2.91 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
import itertools
import math
from typing import Any, Dict, List, Optional, Tuple

import numpy as np
import torch
import triton
import triton.testing
from sgl_kernel import sgl_per_tensor_quant_fp8
from vllm import _custom_ops as ops

from sglang.srt.utils import is_hip

14
15
_is_hip = is_hip()
fp8_type_ = torch.float8_e4m3fnuz if _is_hip else torch.float8_e4m3fn
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98


def vllm_scaled_fp8_quant(
    input: torch.Tensor,
    scale: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
    return ops.scaled_fp8_quant(input, scale)


def sglang_scaled_fp8_quant(
    input: torch.Tensor,
    scale: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
    fp8_type_: torch.dtype = torch.float8_e4m3fn
    output = torch.empty_like(input, device=input.device, dtype=fp8_type_)
    is_static = True
    if scale is None:
        scale = torch.zeros(1, device=input.device, dtype=torch.float32)
        is_static = False
    sgl_per_tensor_quant_fp8(input, output, scale, is_static)

    return output, scale


def calculate_diff(batch_size: int, seq_len: int):
    """Calculate difference between VLLM and SGLang implementations."""
    device = torch.device("cuda")
    x = torch.rand((batch_size, seq_len), dtype=torch.float16, device=device)

    vllm_out, vllm_scale = vllm_scaled_fp8_quant(x)
    sglang_out, sglang_scale = sglang_scaled_fp8_quant(x)

    scale_diff = torch.abs(vllm_scale - sglang_scale).item()
    output_diff = torch.abs(vllm_out.float() - sglang_out.float()).mean().item()

    if torch.allclose(
        vllm_out.to(torch.float32), sglang_out.to(torch.float32), rtol=1e-3, atol=1e-5
    ) and torch.allclose(vllm_scale, sglang_scale, rtol=1e-3, atol=1e-5):
        print("✅ All implementations match")
    else:
        print("❌ Implementations differ")


batch_size_range = [16, 32, 64, 128]
seq_len_range = [64, 128, 256, 512, 1024, 2048]

configs = list(itertools.product(batch_size_range, seq_len_range))


@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=["batch_size", "seq_len"],
        x_vals=configs,
        line_arg="provider",
        line_vals=["vllm", "sglang"],
        line_names=["VLLM", "SGL Kernel"],
        styles=[("blue", "-"), ("green", "-")],
        ylabel="us",
        plot_name="per-tensor-quant-fp8-performance",
        args={},
    )
)
def benchmark(batch_size, seq_len, provider):
    dtype = torch.float16
    device = torch.device("cuda")

    x = torch.randn(batch_size * seq_len, 4096, device=device, dtype=dtype)

    quantiles = [0.5, 0.2, 0.8]

    if provider == "vllm":
        fn = lambda: vllm_scaled_fp8_quant(x.clone())
    elif provider == "sglang":
        fn = lambda: sglang_scaled_fp8_quant(x.clone())

    ms, min_ms, max_ms = triton.testing.do_bench(fn, quantiles=quantiles)

    return 1000 * ms, 1000 * max_ms, 1000 * min_ms


if __name__ == "__main__":
    calculate_diff(batch_size=4, seq_len=4096)
    benchmark.run(print_data=True)