test_fused_moe.py 6.32 KB
Newer Older
1
2
3
import unittest

import torch
4
5
import torch.nn.functional as F
from tqdm import tqdm
6
7
8
from vllm.model_executor.layers.fused_moe import fused_moe as fused_moe_vllm

from sglang.srt.layers.activation import SiluAndMul
Ke Bao's avatar
Ke Bao committed
9
from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_moe
10
11
12
13
14
15


class TestFusedMOE(unittest.TestCase):
    NUM_EXPERTS = [8, 64]
    TOP_KS = [2, 6]

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    @staticmethod
    def create_random_cuda_tensor(shape, dtype, mean=0, std=0.01):
        """Create a random CUDA tensor

        Args:
            shape: Tensor shape
            dtype: Data type
            mean: Mean value
            std: Standard deviation

        Returns:
            torch.Tensor: Randomly initialized CUDA tensor
        """
        return torch.empty(shape, dtype=dtype, device="cuda").normal_(mean, std)

    def get_tolerance(self, dtype):
        """Get tolerance values for different data types

        Args:
            dtype: Data type

        Returns:
            tuple: (relative tolerance, absolute tolerance)
        """
        if dtype == torch.float32:
            return 1e-3, 1e-5
        elif dtype in [torch.float16, torch.bfloat16]:
            return 1e-1, 1e-2
        else:
            return 1e-2, 1e-2  # Default values for other types

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    def torch_naive_moe(self, a, w1, w2, score, topk):
        B, D = a.shape
        a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
        out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device)
        score = torch.softmax(score, dim=-1, dtype=torch.float32)
        topk_weight, topk_ids = torch.topk(score, topk)
        topk_weight = topk_weight.view(-1)
        topk_ids = topk_ids.view(-1)
        for i in range(w1.shape[0]):
            mask = topk_ids == i
            if mask.sum():
                out[mask] = SiluAndMul()(a[mask] @ w1[i].transpose(0, 1)) @ w2[
                    i
                ].transpose(0, 1)
        return (
            out.view(B, -1, w2.shape[1]) * topk_weight.view(B, -1, 1).to(out.dtype)
        ).sum(dim=1)

    def _test_case(self, m, n, k, e, topk, dtype, use_fp8_w8a8=False):
66
67
        rtol, atol = self.get_tolerance(dtype)

68
69
70
71
72
73
        if use_fp8_w8a8:
            # AssertionError: fp8e4nv data type is not supported on CUDA arch < 89
            capability = torch.cuda.get_device_capability()
            if not (capability[0] >= 9 or capability == (8, 9)):
                return

74
75
76
            a = self.create_random_cuda_tensor((m, k), dtype)
            w1 = self.create_random_cuda_tensor((e, 2 * n, k), dtype)
            w2 = self.create_random_cuda_tensor((e, k, n), dtype)
77
78
            w1 = w1.to(torch.float8_e4m3fn)
            w2 = w2.to(torch.float8_e4m3fn)
79
            score = self.create_random_cuda_tensor((m, e), dtype)
80

81
82
83
84
            w1_scale = self.create_random_cuda_tensor(e, torch.float32)
            w2_scale = self.create_random_cuda_tensor(e, torch.float32)
            a1_scale = self.create_random_cuda_tensor(1, torch.float32)
            a2_scale = self.create_random_cuda_tensor(1, torch.float32)
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

            sglang_output = fused_moe(
                a,
                w1,
                w2,
                score,
                topk,
                renormalize=False,
                use_fp8_w8a8=True,
                w1_scale=w1_scale,
                w2_scale=w2_scale,
                a1_scale=a1_scale,
                a2_scale=a2_scale,
            )

            vllm_output = fused_moe_vllm(
                a,
                w1,
                w2,
                score,
                topk,
                renormalize=False,
                use_fp8_w8a8=True,
                w1_scale=w1_scale,
                w2_scale=w2_scale,
                a1_scale=a1_scale,
                a2_scale=a2_scale,
            )

114
            torch.testing.assert_close(sglang_output, vllm_output, rtol=rtol, atol=atol)
115
116

        else:
117
118
119
120
            a = self.create_random_cuda_tensor((m, k), dtype)
            w1 = self.create_random_cuda_tensor((e, 2 * n, k), dtype)
            w2 = self.create_random_cuda_tensor((e, k, n), dtype)
            score = self.create_random_cuda_tensor((m, e), dtype)
121
122
123

            triton_output = fused_moe(a, w1, w2, score, topk, renormalize=False)
            torch_output = self.torch_naive_moe(a, w1, w2, score, topk)
124
125
126
            torch.testing.assert_close(
                triton_output, torch_output, rtol=rtol, atol=atol
            )
127
128
129
130
131
132
133
134

    def test_various_configurations(self):
        m_values = [1, 33, 64, 222, 1024 * 128]
        n_values = [128, 1024, 2048]
        k_values = [128, 511, 1024]
        dtypes = [torch.float16, torch.bfloat16]
        fp8_modes = [False, True]

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        # Calculate total number of tests
        total_tests = (
            len(m_values)
            * len(n_values)
            * len(k_values)
            * len(self.NUM_EXPERTS)
            * len(self.TOP_KS)
            * len(dtypes)
            * len(fp8_modes)
        )

        # Create progress bar
        with tqdm(total=total_tests, desc="Running MoE tests") as pbar:
            for m in m_values:
                for n in n_values:
                    for k in k_values:
                        for e in self.NUM_EXPERTS:
                            for topk in self.TOP_KS:
                                for dtype in dtypes:
                                    for use_fp8_w8a8 in fp8_modes:
                                        with self.subTest(
                                            m=m,
                                            n=n,
                                            k=k,
                                            e=e,
                                            topk=topk,
                                            dtype=dtype,
                                            fp8=use_fp8_w8a8,
                                        ):
                                            self._test_case(
                                                m,
                                                n,
                                                k,
                                                e,
                                                topk,
                                                dtype,
                                                use_fp8_w8a8=use_fp8_w8a8,
                                            )
                                        pbar.update(1)
174
175
176
177


if __name__ == "__main__":
    unittest.main()