native_api.ipynb 7.14 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
7
    "# Native API\n",
Chayenne's avatar
Chayenne committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    "\n",
    "Apart from the OpenAI compatible API, the SGLang Runtime also provides its native server API. We introduce these following API:\n",
    "\n",
    "- `/generate`\n",
    "- `/update_weights`\n",
    "- `/get_server_args`\n",
    "- `/get_model_info`\n",
    "- `/health`\n",
    "- `/health_generate`\n",
    "- `/flush_cache`\n",
    "- `/get_memory_pool_size`\n",
    "\n",
    "We mainly use `requests` to test these APIs in the following examples. You can also use `curl`."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Launch A Server"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sglang.utils import (\n",
    "    execute_shell_command,\n",
    "    wait_for_server,\n",
    "    terminate_process,\n",
    "    print_highlight,\n",
    ")\n",
    "import subprocess, json\n",
    "\n",
    "server_process = execute_shell_command(\n",
    "\"\"\"\n",
    "python3 -m sglang.launch_server --model-path meta-llama/Llama-3.2-1B-Instruct --port=30010\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(\"http://localhost:30010\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Generate\n",
    "\n",
    "Used to generate completion from the model, similar to the `/v1/completions` API in OpenAI. Detailed parameters can be found in the [sampling parameters](https://sgl-project.github.io/references/sampling_params.html)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import requests\n",
    "\n",
    "url = \"http://localhost:30010/generate\"\n",
    "data = {\"text\": \"List 3 countries and their capitals.\"}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Get Server Args\n",
    "\n",
    "Used to get the serving args when the server is launched."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "url = \"http://localhost:30010/get_server_args\"\n",
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.json())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Get Model Info\n",
    "\n",
    "Used to get the model info.\n",
    "\n",
    "- `model_path`: The path/name of the model.\n",
    "- `is_generation`: Whether the model is used as generation model or embedding model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "url = \"http://localhost:30010/get_model_info\"\n",
    "\n",
    "response = requests.get(url)\n",
    "response_json = response.json()\n",
    "print_highlight(response_json)\n",
    "assert response_json[\"model_path\"] == \"meta-llama/Llama-3.2-1B-Instruct\"\n",
    "assert response_json[\"is_generation\"] == True\n",
    "assert response_json.keys() == {\"model_path\", \"is_generation\"}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Health and Health Generate\n",
    "\n",
    "- `/health`: Check the health of the server.\n",
    "- `/health_generate`: Check the health of the server by generating one token."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "url = \"http://localhost:30010/health_generate\"\n",
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "url = \"http://localhost:30010/health\"\n",
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Flush Cache\n",
    "\n",
    "Used to flush the radix cache. It will be automatically triggered when the model weights are updated by the `/update_weights` API."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# flush cache\n",
    "\n",
    "url = \"http://localhost:30010/flush_cache\"\n",
    "\n",
    "response = requests.post(url)\n",
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Get Memory Pool Size\n",
    "\n",
    "Get the memory pool size in number of tokens.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# get_memory_pool_size\n",
    "\n",
    "url = \"http://localhost:30010/get_memory_pool_size\"\n",
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Update Weights\n",
    "\n",
    "Update model weights without restarting the server. Use for continuous evaluation during training. Only applicable for models with the same architecture and parameter size."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# successful update with same architecture and size\n",
    "\n",
    "url = \"http://localhost:30010/update_weights\"\n",
    "data = {\"model_path\": \"meta-llama/Llama-3.2-1B\"}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.text)\n",
    "assert response.json()[\"success\"] == True\n",
    "assert response.json()[\"message\"] == \"Succeeded to update model weights.\"\n",
    "assert response.json().keys() == {\"success\", \"message\"}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# failed update with different parameter size\n",
    "\n",
    "url = \"http://localhost:30010/update_weights\"\n",
    "data = {\"model_path\": \"meta-llama/Llama-3.2-3B\"}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "print_highlight(response_json)\n",
    "assert response_json[\"success\"] == False\n",
    "assert response_json[\"message\"] == (\n",
    "    \"Failed to update weights: The size of tensor a (2048) must match \"\n",
    "    \"the size of tensor b (3072) at non-singleton dimension 1.\\n\"\n",
    "    \"Rolling back to original weights.\"\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
257
   "execution_count": 22,
Chayenne's avatar
Chayenne committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "AlphaMeemory",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}