test_custom_allreduce.py 6.07 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import os
import random
import socket
import unittest
from typing import Any

import ray
import torch
import torch.distributed as dist

from sglang.srt.distributed import init_distributed_environment
from sglang.srt.distributed.communication_op import (  # noqa
    tensor_model_parallel_all_reduce,
)
from sglang.srt.distributed.parallel_state import (
    get_tensor_model_parallel_group,
    graph_capture,
    initialize_model_parallel,
)
20
from sglang.test.test_utils import CustomTestCase
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45


def get_open_port() -> int:
    # try ipv4
    try:
        with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
            s.bind(("", 0))
            return s.getsockname()[1]
    except OSError:
        # try ipv6
        with socket.socket(socket.AF_INET6, socket.SOCK_STREAM) as s:
            s.bind(("", 0))
            return s.getsockname()[1]


def multi_process_parallel(
    world_size: int,
    cls: Any,
    test_target: Any,
) -> None:

    # Using ray helps debugging the error when it failed
    # as compared to multiprocessing.
    # NOTE: We need to set working_dir for distributed tests,
    # otherwise we may get import errors on ray workers
Lianmin Zheng's avatar
Lianmin Zheng committed
46
47

    ray.init(log_to_driver=True)
48
49
50
51
52
53
54
55
56
57

    distributed_init_port = get_open_port()
    refs = []
    for rank in range(world_size):
        refs.append(test_target.remote(cls, world_size, rank, distributed_init_port))
    ray.get(refs)

    ray.shutdown()


58
class TestCustomAllReduce(CustomTestCase):
59
60
61
62
63
64
65
66
67
68
69
70
    TEST_SIZES = [
        512,
        4096,
        32768,
        262144,
        2097152,
        16777216,
        33554432,
    ]  # 512B...32MB
    WORLD_SIZES = [2, 4, 6, 8]
    TEST_LOOP = 10

71
72
    @classmethod
    def setUpClass(cls):
73
        random.seed(42)  # keep the deterministic seed
74
75

    def test_graph_allreduce(self):
76
        for world_size in self.WORLD_SIZES:
77
78
79
80
81
            if world_size > torch.cuda.device_count():
                continue
            multi_process_parallel(world_size, self, self.graph_allreduce)

    def test_eager_allreduce(self):
82
        for world_size in self.WORLD_SIZES:
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
            if world_size > torch.cuda.device_count():
                continue
            multi_process_parallel(world_size, self, self.eager_allreduce)

    @ray.remote(num_gpus=1, max_calls=1)
    def graph_allreduce(self, world_size, rank, distributed_init_port):
        del os.environ["CUDA_VISIBLE_DEVICES"]
        device = torch.device(f"cuda:{rank}")
        torch.cuda.set_device(device)
        distributed_init_method = f"tcp://localhost:{distributed_init_port}"
        init_distributed_environment(
            world_size=world_size,
            rank=rank,
            distributed_init_method=distributed_init_method,
            local_rank=rank,
        )
        initialize_model_parallel(tensor_model_parallel_size=world_size)
        group = get_tensor_model_parallel_group().device_group

        # A small all_reduce for warmup.
        # this is needed because device communicators might be created lazily
        # (e.g. NCCL). This will ensure that the communicator is initialized
        # before any communication happens, so that this group can be used for
        # graph capture immediately.
        data = torch.zeros(1)
        data = data.to(device=device)
        torch.distributed.all_reduce(data, group=group)
        torch.cuda.synchronize()
        del data

113
        for sz in self.TEST_SIZES:
114
            for dtype in [torch.float32, torch.float16, torch.bfloat16]:
115
                for _ in range(self.TEST_LOOP):
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
                    with graph_capture() as graph_capture_context:
                        # use integers so result matches NCCL exactly
                        inp1 = torch.randint(
                            1,
                            16,
                            (sz,),
                            dtype=dtype,
                            device=torch.cuda.current_device(),
                        )
                        inp2 = torch.randint(
                            1,
                            16,
                            (sz,),
                            dtype=dtype,
                            device=torch.cuda.current_device(),
                        )
                        torch.cuda.synchronize()
                        graph = torch.cuda.CUDAGraph()
                        with torch.cuda.graph(
                            graph, stream=graph_capture_context.stream
                        ):
                            out1 = tensor_model_parallel_all_reduce(inp1)
                            # the input buffer is immediately modified to test
                            # synchronization
                            dist.all_reduce(inp1, group=group)
                            out2 = tensor_model_parallel_all_reduce(inp2)
                            dist.all_reduce(inp2, group=group)
                    graph.replay()
                    torch.testing.assert_close(out1, inp1)
                    torch.testing.assert_close(out2, inp2)

    @ray.remote(num_gpus=1, max_calls=1)
    def eager_allreduce(self, world_size, rank, distributed_init_port):
        del os.environ["CUDA_VISIBLE_DEVICES"]
        device = torch.device(f"cuda:{rank}")
        torch.cuda.set_device(device)
        distributed_init_method = f"tcp://localhost:{distributed_init_port}"
        init_distributed_environment(
            world_size=world_size,
            rank=rank,
            distributed_init_method=distributed_init_method,
            local_rank=rank,
        )
        initialize_model_parallel(tensor_model_parallel_size=world_size)
        group = get_tensor_model_parallel_group().device_group

162
        for sz in self.TEST_SIZES:
163
            for dtype in [torch.float32, torch.float16, torch.bfloat16]:
164
                for _ in range(self.TEST_LOOP):
165
166
167
168
169
170
171
172
173
174
                    inp1 = torch.randint(
                        1, 16, (sz,), dtype=dtype, device=torch.cuda.current_device()
                    )
                    out1 = tensor_model_parallel_all_reduce(inp1)
                    dist.all_reduce(inp1, group=group)
                    torch.testing.assert_close(out1, inp1)


if __name__ == "__main__":
    unittest.main()