flash_attn.py 9.16 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn


def is_fa3_supported(device=None) -> bool:
    # FA3 can fail without a enough shared memory for a some shapes, currently
    #  only 8.0 and 8.7 have enough shared memory for all shapes
    #  https://docs.nvidia.com/cuda/cuda-c-programming-guide/#shared-memory-8-x
    return FA3_AVAILABLE and (
        torch.cuda.get_device_capability(device)[0] >= 9
        or torch.cuda.get_device_capability(device) == (8, 0)
        or torch.cuda.get_device_capability(device) == (8, 7)
    )


def maybe_contiguous(x):
    return x.contiguous() if x is not None and x.stride(-1) != 1 else x


def flash_attn_with_kvcache(
    q,
    k_cache,
    v_cache,
    k=None,
    v=None,
    qv=None,
    rotary_cos=None,
    rotary_sin=None,
    cache_seqlens: Optional[Union[(int, torch.Tensor)]] = None,
    cache_batch_idx: Optional[torch.Tensor] = None,
    cache_leftpad: Optional[torch.Tensor] = None,
    page_table: Optional[torch.Tensor] = None,
    cu_seqlens_q: Optional[torch.Tensor] = None,
    cu_seqlens_k_new: Optional[torch.Tensor] = None,
    max_seqlen_q: Optional[int] = None,
    rotary_seqlens: Optional[torch.Tensor] = None,
    q_descale: Optional[torch.Tensor] = None,
    k_descale: Optional[torch.Tensor] = None,
    v_descale: Optional[torch.Tensor] = None,
    softmax_scale=None,
    causal=False,
    window_size=(-1, -1),  # -1 means infinite context window
    softcap=0.0,  # 0.0 means deactivated
    rotary_interleaved=True,
    scheduler_metadata=None,
    num_splits=0,  # Can be tuned for speed
    pack_gqa=None,  # Can be tuned for speed
    sm_margin=0,  # Can be tuned if some SMs are used for communication
    return_softmax_lse=False,
):
    """
    If k and v are not None, k_cache and v_cache will be updated *inplace* with the new values from
    k and v. This is useful for incremental decoding: you can pass in the cached keys/values from
    the previous step, and update them with the new keys/values from the current step, and do
    attention with the updated cache, all in 1 kernel.

    If you pass in k / v, you must make sure that the cache is large enough to hold the new values.
    For example, the KV cache could be pre-allocated with the max sequence length, and you can use
    cache_seqlens to keep track of the current sequence lengths of each sequence in the batch.

    Also apply rotary embedding if rotary_cos and rotary_sin are passed in. The key @k will be
    rotated by rotary_cos and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
    If causal or local (i.e., window_size != (-1, -1)), the query @q will be rotated by rotary_cos
    and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
    If not causal and not local, the query @q will be rotated by rotary_cos and rotary_sin at
    indices cache_seqlens only (i.e. we consider all tokens in @q to be at position cache_seqlens).

    See tests/test_flash_attn.py::test_flash_attn_kvcache for examples of how to use this function.

    Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
    than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
    For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
    0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.

    If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
    For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
        1 1 1 1 0
        1 1 1 1 1
    If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
        0 0
        0 0
        0 0
        1 0
        1 1
    If the row of the mask is all zero, the output will be zero.

    If window_size != (-1, -1), implements sliding window local attention. Query at position i
    will only attend to keys between
    [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.

    Note: Does not support backward pass.

    Arguments:
        q: (batch_size, seqlen, nheads, headdim)
        k_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim) if there's no page_table,
            or (num_blocks, page_block_size, nheads_k, headdim) if there's a page_table (i.e. paged KV cache)
            page_block_size must be a multiple of 256.
        v_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim_v) if there's no page_table,
            or (num_blocks, page_block_size, nheads_k, headdim_v) if there's a page_table (i.e. paged KV cache)
        k [optional]: (batch_size, seqlen_new, nheads_k, headdim). If not None, we concatenate
            k with k_cache, starting at the indices specified by cache_seqlens.
        v [optional]: (batch_size, seqlen_new, nheads_k, headdim_v). Similar to k.
        qv [optional]: (batch_size, seqlen, nheads, headdim_v)
        rotary_cos [optional]: (seqlen_ro, rotary_dim / 2). If not None, we apply rotary embedding
            to k and q. Only applicable if k and v are passed in. rotary_dim must be divisible by 16.
        rotary_sin [optional]: (seqlen_ro, rotary_dim / 2). Similar to rotary_cos.
        cache_seqlens: int, or (batch_size,), dtype torch.int32. The sequence lengths of the
            KV cache.
        cache_batch_idx: (batch_size,), dtype torch.int32. The indices used to index into the KV cache.
            If None, we assume that the batch indices are [0, 1, 2, ..., batch_size - 1].
            If the indices are not distinct, and k and v are provided, the values updated in the cache
                 might come from any of the duplicate indices.
        cache_leftpad: (batch_size,), dtype torch.int32. The index that the KV cache starts. If None, assume 0.
        page_table [optional]: (batch_size, max_num_blocks_per_seq), dtype torch.int32.
        softmax_scale: float. The scaling of QK^T before applying softmax.
            Default to 1 / sqrt(headdim).
        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
        window_size: (left, right). If not (-1, -1), implements sliding window local attention.
        softcap: float. Anything > 0 activates softcapping attention.
        rotary_interleaved: bool. Only applicable if rotary_cos and rotary_sin are passed in.
            If True, rotary embedding will combine dimensions 0 & 1, 2 & 3, etc. If False,
            rotary embedding will combine dimensions 0 & rotary_dim / 2, 1 & rotary_dim / 2 + 1
            (i.e. GPT-NeoX style).
        num_splits: int. If > 1, split the key/value into this many chunks along the sequence.
           If num_splits == 1, we don't split the key/value. If num_splits == 0, we use a heuristic
           to automatically determine the number of splits.
           Don't change this unless you know what you are doing.
        return_softmax_lse: bool. Whether to return the logsumexp of the attention scores.

    Return:
        out: (batch_size, seqlen, nheads, headdim).
        softmax_lse [optional, if return_softmax_lse=True]: (batch_size, nheads, seqlen). The
            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
            normalization factor).
    """
    assert k_cache.stride(-1) == 1, "k_cache must have contiguous last dimension"
    assert v_cache.stride(-1) == 1, "v_cache must have contiguous last dimension"
    if softmax_scale is None:
        softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (
            -0.5
        )
    if cache_seqlens is not None and isinstance(cache_seqlens, int):
        cache_seqlens = torch.full(
            (k_cache.shape[0],), cache_seqlens, dtype=torch.int32, device=k_cache.device
        )
        cache_seqlens = maybe_contiguous(cache_seqlens)

    q, k_cache, k, v = [maybe_contiguous(x) for x in (q, k_cache, k, v)]
    v_cache = (
        v_cache.contiguous()
        if v_cache.stride(-1) != 1 and v_cache.stride(-3) != 1
        else v_cache
    )
    cu_seqlens_q, cu_seqlens_k_new = [
        maybe_contiguous(x) for x in (cu_seqlens_q, cu_seqlens_k_new)
    ]
    page_table, cache_batch_idx, cache_leftpad = [
        maybe_contiguous(x) for x in (page_table, cache_batch_idx, cache_leftpad)
    ]
    rotary_cos, rotary_sin = [maybe_contiguous(x) for x in (rotary_cos, rotary_sin)]
    rotary_seqlens = maybe_contiguous(rotary_seqlens)

    out, softmax_lse, *rest = torch.ops.sgl_kernel.fwd.default(
        q,
        k_cache,
        v_cache,
        k,
        v,
        qv,
        None,  # out
        cu_seqlens_q,
        None,  # cu_seqlens_k
        cu_seqlens_k_new,
        None,  # seqused_q
        cache_seqlens,
        max_seqlen_q,
        None,  # max_seqlen_k
        page_table,
        cache_batch_idx,
        cache_leftpad,
        rotary_cos,
        rotary_sin,
        rotary_seqlens,
        q_descale,
        k_descale,
        v_descale,
        softmax_scale,
        causal,
        window_size[0],
        window_size[1],
        softcap,
        rotary_interleaved,
        scheduler_metadata,
        num_splits,
        pack_gqa,
        sm_margin,
    )
    # return (out, softmax_lse) if return_softmax_lse else out
    return (out, softmax_lse, *rest) if return_softmax_lse else out