mllama.py 38.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Adapted from:
# https://github.com/vllm-project/vllm/blob/7193774b1ff8603ad5bf4598e5efba0d9a39b436/vllm/model_executor/models/mllama.py
"""PyTorch Mllama model."""
import math
from typing import Iterable, List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers.models.mllama.configuration_mllama as config_mllama
from torch import nn
from transformers.modeling_outputs import BaseModelOutput, CausalLMOutputWithPast
from transformers.models.mllama.modeling_mllama import (
    _prepare_aspect_ratio_attention_mask,
)

17
18
import sglang.srt.distributed.parallel_state as ps
from sglang.srt.distributed import get_tensor_model_parallel_world_size
19
from sglang.srt.layers.activation import get_act_fn
20
from sglang.srt.layers.attention.vision import VisionAttention
21
22
23
24
from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.linear import (
    ColumnParallelLinear,
    QKVParallelLinear,
25
    ReplicatedLinear,
26
27
28
29
30
    RowParallelLinear,
)
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention
31
32
33
34
35
from sglang.srt.layers.vocab_parallel_embedding import (
    DEFAULT_VOCAB_PADDING_SIZE,
    ParallelLMHead,
    VocabParallelEmbedding,
)
Mick's avatar
Mick committed
36
from sglang.srt.managers.schedule_batch import MultimodalInputs
37
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
38
from sglang.srt.model_loader.weight_utils import default_weight_loader
39
from sglang.srt.models.llama import LlamaDecoderLayer, LlamaMLP
40
from sglang.srt.utils import add_prefix
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151


class ColumnParallelConv2dPatch(torch.nn.Module):
    """Conv2D Patching layer with model parallelism.
    Column parallel over unfolded input.
    Arguments:
        in_channels: Input channels.
        out_channels: Output channels.
        kernel_size: Size of convolution kernel.
        stride (default 1): Stride for convolution.
        bias (default False): Use bias in Conv2d.
    Input: (bsz, in_channels, width, height)
    Output: (bsz, num_tokens, out_channels)
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: Union[int, Tuple[int, int]],
        stride: Union[int, Tuple[int, int]],
        bias: bool = False,
    ) -> None:
        super().__init__()
        if isinstance(kernel_size, int):
            kernel_size = (kernel_size, kernel_size)
        self._unfold = torch.nn.Unfold(kernel_size=kernel_size, stride=stride)
        self._linear = ColumnParallelLinear(
            in_channels * kernel_size[0] * kernel_size[1],
            out_channels,
            bias=bias,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self._unfold(x)
        x = x.permute(0, 2, 1)
        x, _ = self._linear(x)
        return x


class MllamaPrecomputedAspectRatioEmbedding(nn.Module):

    def __init__(self, config: config_mllama.MllamaVisionConfig, is_gated: bool = True):
        super().__init__()
        self.max_num_tiles = config.max_num_tiles
        self.hidden_size = config.hidden_size
        self.max_aspect_ratio_id = config.max_aspect_ratio_id
        self.is_gated = is_gated

        self.embedding = nn.Embedding(
            self.max_aspect_ratio_id + 1, self.max_num_tiles * self.hidden_size
        )
        if is_gated:
            self.gate = nn.Parameter(torch.zeros(1))

    def forward(
        self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor
    ) -> torch.Tensor:
        embeddings = self.embedding(aspect_ratio_ids)
        embeddings = embeddings.reshape(-1, self.max_num_tiles, 1, self.hidden_size)

        if self.is_gated:
            embeddings = embeddings * self.gate.tanh()

        hidden_state = hidden_state + embeddings
        return hidden_state


class MllamaPrecomputedPositionEmbedding(nn.Module):
    def __init__(self, config: config_mllama.MllamaVisionConfig):
        super().__init__()
        self.max_num_tiles = config.max_num_tiles
        self.max_aspect_ratio_id = config.max_aspect_ratio_id
        self.num_patches = (config.image_size // config.patch_size) ** 2 + 1
        self.hidden_size = config.hidden_size
        self.scale = config.hidden_size**-0.5

        self.gate = nn.Parameter(torch.zeros(1))

        # position embedding
        position_embedding = torch.randn(self.num_patches, self.hidden_size)
        self.embedding = nn.Parameter(self.scale * position_embedding)

        # tile position embedding
        self.tile_embedding = nn.Embedding(
            self.max_aspect_ratio_id + 1,
            self.max_num_tiles * self.num_patches * self.hidden_size,
        )

    def forward(
        self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor
    ) -> torch.Tensor:
        # position embeddings
        gated_position_embedding = (1 - self.gate.tanh()) * self.embedding
        hidden_state = hidden_state + gated_position_embedding.view(
            1, 1, self.num_patches, self.hidden_size
        )

        # precomputed tile position embeddings
        tile_position_embedding = self.tile_embedding(aspect_ratio_ids)
        batch_size = hidden_state.shape[0]
        tile_position_embedding = tile_position_embedding.reshape(
            batch_size, self.max_num_tiles, self.num_patches, self.hidden_size
        )
        gated_tile_position_embedding = self.gate.tanh() * tile_position_embedding
        hidden_state = hidden_state + gated_tile_position_embedding

        return hidden_state


class MllamaVisionMLP(nn.Module):
152
153
154
155
156
157
    def __init__(
        self,
        config,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
158
159
160
161
162
163
164
165
        super().__init__()
        self.config = config
        self.activation_fn = get_act_fn(config.hidden_act)
        self.fc1 = ColumnParallelLinear(
            config.hidden_size,
            config.intermediate_size,
            bias=True,
            quant_config=quant_config,
166
            prefix=add_prefix("fc1", prefix),
167
168
169
170
171
172
        )
        self.fc2 = RowParallelLinear(
            config.intermediate_size,
            config.hidden_size,
            bias=True,
            quant_config=quant_config,
173
            prefix=add_prefix("fc2", prefix),
174
175
176
177
178
179
180
181
182
183
184
185
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states, _ = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states, _ = self.fc2(hidden_states)

        return hidden_states


class MllamaVisionEncoderLayer(nn.Module):
    def __init__(
186
187
        self,
        config: config_mllama.MllamaVisionConfig,
188
        quant_config: Optional[QuantizationConfig] = None,
189
190
        is_gated: bool = False,
        prefix: str = "",
191
192
193
194
195
196
197
198
    ):
        super().__init__()

        self.hidden_size = config.hidden_size
        self.num_attention_heads = config.attention_heads
        self.is_gated = is_gated
        self.intermediate_size = config.intermediate_size

199
200
201
202
203
        self.self_attn = VisionAttention(
            self.hidden_size,
            self.num_attention_heads,
            self.hidden_size,
            use_qkv_parallel=True,
204
            quant_config=quant_config,
205
            dropout=0.0,
206
            qkv_backend="sdpa",
207
            softmax_in_single_precision=False,
208
            flatten_batch=False,
209
            prefix=add_prefix("self_attn", prefix),
210
        )
211
212
213
        self.mlp = MllamaVisionMLP(
            config, quant_config, prefix=add_prefix("mlp", prefix)
        )
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

        self.input_layernorm = nn.LayerNorm(self.hidden_size, eps=config.norm_eps)
        self.post_attention_layernorm = nn.LayerNorm(
            self.hidden_size, eps=config.norm_eps
        )

        # there used to be an if else here, no code path
        if is_gated:
            self.gate_attn = nn.Parameter(torch.ones(1) * math.pi / 4)
            self.gate_ffn = nn.Parameter(torch.ones(1) * math.pi / 4)

    def forward(
        self,
        hidden_state: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
    ):
        # Self Attention
        residual = hidden_state
        hidden_state = self.input_layernorm(hidden_state)
        hidden_state = self.self_attn(hidden_state, attention_mask=attention_mask)
        gate_attn = 1 if not self.is_gated else self.gate_attn.tanh()
        hidden_state = residual + gate_attn * hidden_state

        # Feed forward
        residual = hidden_state
        hidden_state = self.post_attention_layernorm(hidden_state)
        hidden_state = self.mlp(hidden_state)
        gate_ffn = 1 if not self.is_gated else self.gate_ffn.tanh()
        hidden_state = residual + gate_ffn * hidden_state

        return hidden_state


class MllamaVisionEncoder(nn.Module):
    def __init__(
        self,
        config: config_mllama.MllamaVisionConfig,
251
        quant_config: Optional[QuantizationConfig] = None,
252
253
254
        num_layers=32,
        is_gated=False,
        output_hidden_states=None,
255
        prefix: str = "",
256
257
258
259
    ):
        super().__init__()
        self.config = config
        self.layers = nn.ModuleList(
260
261
            [
                MllamaVisionEncoderLayer(
262
263
264
265
                    config,
                    quant_config,
                    is_gated,
                    prefix=add_prefix(f"layers.{i}", prefix),
266
267
268
                )
                for i in range(num_layers)
            ]
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
        )
        self.output_hidden_states = output_hidden_states or []

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        encoder_states = ()

        for i, encoder_layer in enumerate(self.layers):
            if i in self.output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            hidden_states = encoder_layer(
                hidden_states,
                attention_mask,
            )

        if len(self.layers) - 1 in self.output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        return hidden_states, encoder_states


class MllamaVisionModel(nn.Module):
294
295
296
297
298
299
    def __init__(
        self,
        config: config_mllama.MllamaVisionConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
        super().__init__()
        self.image_size = config.image_size
        self.patch_size = config.patch_size
        self.max_num_tiles = config.max_num_tiles
        self.hidden_size = config.hidden_size
        self.in_channels = config.num_channels
        self.intermediate_layers_indices = config.intermediate_layers_indices

        self.num_patches = (self.image_size // self.patch_size) ** 2 + 1
        self.scale = config.hidden_size**-0.5

        self.patch_embedding = ColumnParallelConv2dPatch(
            in_channels=config.num_channels,
            out_channels=self.hidden_size,
            kernel_size=self.patch_size,
            stride=self.patch_size,
            bias=False,
        )

        self.class_embedding = nn.Parameter(self.scale * torch.randn(self.hidden_size))
        self.gated_positional_embedding = MllamaPrecomputedPositionEmbedding(config)

        self.pre_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding(
            config, is_gated=True
        )
        self.post_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding(
            config, is_gated=True
        )

        # layer norms
        self.layernorm_pre = nn.LayerNorm(self.hidden_size)
        self.layernorm_post = nn.LayerNorm(self.hidden_size)

        # encoders
        self.transformer = MllamaVisionEncoder(
            config,
336
            quant_config,
337
338
339
            config.num_hidden_layers,
            is_gated=False,
            output_hidden_states=config.intermediate_layers_indices,
340
            prefix=add_prefix("transformer", prefix),
341
342
        )
        self.global_transformer = MllamaVisionEncoder(
343
            config,
344
            quant_config,
345
346
347
            config.num_global_layers,
            is_gated=True,
            prefix=add_prefix("global_transformer", prefix),
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        )

    def apply_class_embedding(self, hidden_state: torch.Tensor) -> torch.Tensor:
        batch_size, _, hidden_size = hidden_state.shape
        class_embedding = self.class_embedding.expand(batch_size, 1, hidden_size)
        hidden_state = torch.cat([class_embedding, hidden_state], dim=1)
        return hidden_state

    def forward(
        self,
        pixel_values: torch.Tensor,
        aspect_ratio_ids: torch.Tensor,
        aspect_ratio_mask: torch.Tensor,
    ) -> torch.Tensor:
        batch_size, num_concurrent_media, num_tiles, num_channels, height, width = (
            pixel_values.shape
        )

        pixel_values = pixel_values.reshape(
            batch_size * num_concurrent_media * num_tiles, num_channels, height, width
        )
        aspect_ratio_ids = aspect_ratio_ids.reshape(
            batch_size * num_concurrent_media, -1
        )

        # patch embedding
        patch_embeds = self.patch_embedding(
            pixel_values.to(self.layernorm_pre.weight.dtype)
        )
        hidden_state = patch_embeds
        hidden_state = ps.get_tp_group().all_gather(hidden_state)

        # tile embeddings
        _, num_patches, dim = hidden_state.shape
        hidden_state = hidden_state.reshape(
            batch_size * num_concurrent_media, num_tiles, -1, dim
        )
        hidden_state = self.pre_tile_positional_embedding(
            hidden_state, aspect_ratio_ids
        )

        # apply cls token
        hidden_state = hidden_state.reshape(
            batch_size * num_concurrent_media * num_tiles, num_patches, dim
        )
        hidden_state = self.apply_class_embedding(hidden_state)
        num_patches += 1

        # apply position embeddings
        hidden_state = hidden_state.reshape(
            batch_size * num_concurrent_media, num_tiles, num_patches, dim
        )
        hidden_state = self.gated_positional_embedding(hidden_state, aspect_ratio_ids)

        # apply encoder
        hidden_state = self.layernorm_pre(hidden_state)

        # Compute the number of tokens to pad
        num_padding_patches = (8 - (hidden_state.shape[-2] % 8)) % 8
        # Compute padding tuple for pad function
        padding = (
            0,
            0,
            0,
            num_padding_patches,
        )  # (pad_left, pad_right, pad_left for dim -2, pad_right for dim -2)
        # Pad the tensor
        hidden_state = F.pad(hidden_state, padding, mode="constant", value=0)
        slice_index = -num_padding_patches if num_padding_patches > 0 else None

        attention_mask = aspect_ratio_mask.reshape(
            batch_size * num_concurrent_media, -1
        )
        attention_mask = _prepare_aspect_ratio_attention_mask(
            aspect_ratio_mask=attention_mask,
            num_patches=self.num_patches,
            target_length=hidden_state.shape[2],
            dtype=self.layernorm_pre.weight.dtype,
        )

        hidden_state = hidden_state.view(batch_size * num_concurrent_media, -1, dim)
        output = self.transformer(
            hidden_state,
            attention_mask=attention_mask,
        )
        hidden_state, intermediate_hidden_states = output[0], output[1]
        intermediate_hidden_states = torch.stack(intermediate_hidden_states, dim=-1)

        # apply global encoder
        hidden_state = self.layernorm_post(hidden_state)
        hidden_state = hidden_state.reshape(
            batch_size * num_concurrent_media,
            num_tiles,
            num_patches + num_padding_patches,
            dim,
        )
        hidden_state = self.post_tile_positional_embedding(
            hidden_state, aspect_ratio_ids
        )
        hidden_state = hidden_state.reshape(
            batch_size * num_concurrent_media,
            num_tiles * (num_patches + num_padding_patches),
            dim,
        )
        hidden_state = self.global_transformer(
            hidden_state, attention_mask=attention_mask
        )[0]
        hidden_state = hidden_state.reshape(
            batch_size * num_concurrent_media,
            num_tiles,
            num_patches + num_padding_patches,
            dim,
        )
        hidden_state = hidden_state[:, :, :slice_index]

        # adding intermediate layer outputs
        hidden_state = hidden_state.reshape(
            batch_size, num_concurrent_media, num_tiles, num_patches, dim
        )
        intermediate_hidden_states = intermediate_hidden_states.reshape(
            batch_size * num_concurrent_media,
            num_tiles,
            num_patches + num_padding_patches,
            -1,
        )
        intermediate_hidden_states = intermediate_hidden_states[:, :, :slice_index]
        intermediate_hidden_states = intermediate_hidden_states.reshape(
            batch_size, num_concurrent_media, num_tiles, num_patches, -1
        )
        hidden_state = torch.cat([hidden_state, intermediate_hidden_states], dim=-1)
        return hidden_state


class MllamaTextRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"


class MllamaTextCrossAttention(nn.Module):
    def __init__(
        self,
        config: Optional[config_mllama.MllamaTextConfig] = None,
        layer_id: Optional[int] = None,
        quant_config: Optional[QuantizationConfig] = None,
504
        prefix: str = "",
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
    ):
        super().__init__()
        self.config = config
        self.model_parallel_size = get_tensor_model_parallel_world_size()
        self.num_heads = self.config.num_attention_heads
        self.num_local_heads = self.num_heads // self.model_parallel_size
        self.num_key_value_heads = self.config.num_key_value_heads
        self.num_local_key_value_heads = (
            self.num_key_value_heads // self.model_parallel_size
        )
        self.dropout = config.dropout
        self.hidden_size = config.hidden_size
        self.head_dim = config.hidden_size // self.num_heads
        self.layer_id = layer_id
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.q_local_size = self.num_local_heads * self.head_dim
        self.kv_local_size = self.num_local_key_value_heads * self.head_dim

        self.qkv_proj = QKVParallelLinear(
            self.hidden_size,
            self.head_dim,
            self.num_heads,
            self.num_key_value_heads,
            bias=False,
            quant_config=quant_config,
530
            prefix=add_prefix("qkv_proj", prefix),
531
532
533
534
535
536
537
        )
        self.o_proj = RowParallelLinear(
            self.num_heads * self.head_dim,
            self.hidden_size,
            bias=False,
            input_is_parallel=True,
            quant_config=quant_config,
538
            prefix=add_prefix("o_proj", prefix),
539
        )
540
541
        # vllm.model_executor.layers.layernorm.RMSNorm has precision issue,
        # use huggingface's instead
542
543
544
545
546
547
548
549
550
551
552
        self.q_norm = MllamaTextRMSNorm(self.head_dim, eps=config.rms_norm_eps)
        self.k_norm = MllamaTextRMSNorm(self.head_dim, eps=config.rms_norm_eps)
        self.scaling = self.head_dim**-0.5

        self.attn = RadixAttention(
            self.num_local_heads,
            self.head_dim,
            self.scaling,
            self.num_local_key_value_heads,
            layer_id=layer_id,
            is_cross_attention=True,
553
            quant_config=quant_config,
554
            prefix=add_prefix("attn", prefix),
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor],
        cross_attention_states: Optional[torch.Tensor],
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:
        qkv_dec, _ = self.qkv_proj(hidden_states)
        q, _, _ = qkv_dec.split(
            [self.q_local_size, self.kv_local_size, self.kv_local_size], dim=-1
        )
        if cross_attention_states is None:
            k = None
            v = None
        else:
            qkv_enc, _ = self.qkv_proj(cross_attention_states)
            _, k, v = qkv_enc.split(
                [self.q_local_size, self.kv_local_size, self.kv_local_size], dim=-1
            )
            k = k.view(-1, self.num_local_key_value_heads, self.head_dim)
            v = v.view(-1, self.num_local_key_value_heads, self.head_dim)
            k = self.k_norm(k)
        q = q.view(-1, self.num_local_heads, self.head_dim)
        q = self.q_norm(q)

        output = self.attn(q, k, v, forward_batch)
        out, _ = self.o_proj(output)
        return out


class MllamaCrossAttentionDecoderLayer(torch.nn.Module):
    """Cross-attention transformer block with tanh-gated attention
    and feedforward."""

    def __init__(
        self,
        config: config_mllama.MllamaTextConfig,
        layer_id: int,
        quant_config: Optional[QuantizationConfig],
596
        prefix: str = "",
597
598
599
600
601
602
603
    ) -> None:
        super().__init__()
        self.layer_id = layer_id
        self.cross_attn = MllamaTextCrossAttention(
            config=config,
            layer_id=layer_id,
            quant_config=quant_config,
604
            prefix=add_prefix("cross_attn", prefix),
605
606
607
608
609
610
611
612
613
614
        )

        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.cross_attn_attn_gate = torch.nn.Parameter(torch.zeros(1))

        self.mlp = LlamaMLP(
            hidden_size=config.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
            quant_config=quant_config,
615
            prefix=add_prefix("mlp", prefix),
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
        )
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )
        self.cross_attn_mlp_gate = torch.nn.Parameter(torch.zeros(1))

    def forward(
        self,
        hidden_states: torch.Tensor,
        cross_attention_states: torch.Tensor,
        cross_attention_mask: torch.Tensor,
        full_text_row_masked_out_mask: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)

        hidden_states = self.cross_attn(
            hidden_states=hidden_states,
            attention_mask=cross_attention_mask,
            cross_attention_states=cross_attention_states,
            forward_batch=forward_batch,
        )
        hidden_states = full_text_row_masked_out_mask * hidden_states
        hidden_states = residual + self.cross_attn_attn_gate.tanh() * hidden_states

        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = full_text_row_masked_out_mask * hidden_states
        hidden_states = residual + self.cross_attn_mlp_gate.tanh() * hidden_states
        return hidden_states


class MllamaTextModel(nn.Module):
    config_class = config_mllama.MllamaTextConfig
    base_model_prefix = "model"

    def __init__(
        self,
        config: config_mllama.MllamaTextConfig,
        quant_config: Optional[QuantizationConfig],
658
        prefix: str = "",
659
660
661
662
663
    ):
        super().__init__()
        self.padding_id = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.embed_tokens = VocabParallelEmbedding(
664
665
666
            config.vocab_size + 8,
            config.hidden_size,
            prefix=add_prefix("embed_tokens", prefix),
667
668
669
670
671
672
673
674
        )
        self.cross_attention_layers = config.cross_attention_layers

        layers = []
        for layer_id in range(config.num_hidden_layers):
            if layer_id in self.cross_attention_layers:
                layers.append(
                    MllamaCrossAttentionDecoderLayer(
675
676
677
678
                        config,
                        layer_id,
                        quant_config=quant_config,
                        prefix=add_prefix(f"layers.{layer_id}", prefix),
679
680
681
682
683
684
                    )
                )
            else:
                # TODO: force LlamaDecoderLayer to config.attention_bias=False
                layers.append(
                    LlamaDecoderLayer(
685
686
687
688
                        config,
                        quant_config=quant_config,
                        layer_id=layer_id,
                        prefix=add_prefix(f"layers.{layer_id}", prefix),
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
                    )
                )

        self.layers = nn.ModuleList(layers)
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        input_ids: torch.LongTensor,
        positions: Optional[torch.LongTensor],
        cross_attention_states: Optional[torch.LongTensor],
        cross_attention_mask: Optional[torch.LongTensor],
        full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]],
        forward_batch: ForwardBatch,
        skip_cross_attention: bool,
    ) -> torch.Tensor:
        inputs_embeds = self.embed_tokens(input_ids)
        hidden_states = inputs_embeds

        for _, decoder_layer in enumerate(self.layers):
            if isinstance(decoder_layer, MllamaCrossAttentionDecoderLayer):
                if not skip_cross_attention:
                    hidden_states = decoder_layer(
                        hidden_states=hidden_states,
                        cross_attention_states=cross_attention_states,
                        cross_attention_mask=cross_attention_mask,
                        full_text_row_masked_out_mask=full_text_row_masked_out_mask,
                        forward_batch=forward_batch,
                    )
            elif isinstance(decoder_layer, LlamaDecoderLayer):
                hidden_states, residual = decoder_layer(
                    positions=positions,
                    hidden_states=hidden_states,
                    forward_batch=forward_batch,
                    residual=None,
                )
                hidden_states = hidden_states + residual
            else:
                raise ValueError(f"Unknown decoder layer type {type(decoder_layer)}")
        hidden_states = self.norm(hidden_states)
        return hidden_states


class MllamaForCausalLM(nn.Module):
    config_class = config_mllama.MllamaTextConfig
    base_model_prefix = "language_model"
    _no_split_modules = [
        "MllamaCrossAttentionDecoderLayer",
        "MllamaSelfAttentionDecoderLayer",
    ]

    def __init__(
        self,
        config: config_mllama.MllamaTextConfig,
        quant_config: Optional[QuantizationConfig],
744
        prefix: str = "",
745
746
747
    ):
        super().__init__()
        self.vocab_size = config.vocab_size
748
749
750
        self.model = MllamaTextModel(
            config, quant_config, prefix=add_prefix("model", prefix)
        )
751
752
753
754
755
756
        self.lm_head = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
            org_num_embeddings=config.vocab_size,
            padding_size=DEFAULT_VOCAB_PADDING_SIZE,
            quant_config=quant_config,
757
            prefix=add_prefix("lm_head", prefix),
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
        )

    def forward(
        self,
        input_ids: torch.LongTensor,
        positions: Optional[torch.LongTensor],
        cross_attention_states: Optional[torch.LongTensor],
        cross_attention_mask: Optional[torch.LongTensor],
        full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]],
        forward_batch: ForwardBatch,
        skip_cross_attention: bool,
    ) -> torch.Tensor:
        hidden_states = self.model(
            input_ids=input_ids,
            positions=positions,
            cross_attention_states=cross_attention_states,
            cross_attention_mask=cross_attention_mask,
            full_text_row_masked_out_mask=full_text_row_masked_out_mask,
            forward_batch=forward_batch,
            skip_cross_attention=skip_cross_attention,
        )
        return hidden_states


class MllamaForConditionalGeneration(nn.Module):
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
    # BitandBytes specific attributes
    default_bitsandbytes_target_modules = [
        ".gate_proj.",
        ".down_proj.",
        ".up_proj.",
        ".q_proj.",
        ".k_proj.",
        ".v_proj.",
        ".o_proj.",
    ]
    # in TP, these weights are partitioned along the column dimension (dim=-1)
    column_parallel_weights_modules = [".down_proj.", ".o_proj."]
    bitsandbytes_stacked_params_mapping = {
        # shard_name, weight_name, index
        "q_proj": ("qkv_proj", 0),
        "k_proj": ("qkv_proj", 1),
        "v_proj": ("qkv_proj", 2),
        "gate_proj": ("gate_up_proj", 0),
        "up_proj": ("gate_up_proj", 1),
    }

804
805
806
807
    def __init__(
        self,
        config: config_mllama.MllamaConfig,
        quant_config: Optional[QuantizationConfig] = None,
808
        prefix: str = "",
809
810
    ):
        super().__init__()
811
        self.quant_config = quant_config
812
813
814
815
816
817
818
819
820
        self.vocab_size = config.text_config.vocab_size
        self.hidden_size = config.text_config.hidden_size
        self.max_num_tiles = config.vision_config.max_num_tiles
        self.vision_output_dim = config.vision_config.vision_output_dim
        self.pad_token_id = (
            config.pad_token_id if config.pad_token_id is not None else -1
        )
        self.image_size = config.vision_config.image_size

821
        self.vision_model = MllamaVisionModel(
822
823
824
            config.vision_config,
            quant_config=quant_config,
            prefix=add_prefix("vision_model", prefix),
825
        )
826
827
828
        self.language_model = MllamaForCausalLM(
            config.text_config,
            quant_config=quant_config,
829
            prefix=add_prefix("language_model", prefix),
830
        )
831
        self.multi_modal_projector = ReplicatedLinear(
832
833
834
            config.vision_config.vision_output_dim,
            config.text_config.hidden_size,
            bias=True,
835
836
            quant_config=quant_config,
            prefix="multi_modal_projector",
837
838
839
        )
        self.logits_processor = LogitsProcessor(config.text_config)

Mick's avatar
Mick committed
840
    def pad_input_ids(self, input_ids: List[int], mm_inputs: MultimodalInputs):
841
        pixel_values = torch.cat([item.feature for item in mm_inputs.mm_items], dim=0)
Mick's avatar
Mick committed
842
        pad_values = [item.pad_value for item in mm_inputs.mm_items]
843
844
845
846

        num_concurrent_media, num_tiles = pixel_values.shape[1:3]
        num_patches = self.vision_model.num_patches
        image_len = num_concurrent_media * num_tiles * num_patches
Mick's avatar
Mick committed
847
        mm_inputs.num_image_tokens = image_len
848
849
850
851
852
853
854
855
856
857
858

        pad_ids = pad_values * ((image_len + len(pad_values)) // len(pad_values))

        return pad_ids[:image_len] + input_ids

    def _batch_image_inputs(self, forward_batch: ForwardBatch):
        if forward_batch.forward_mode.is_decode() or all(forward_batch.encoder_cached):
            return None, None, None, None

        # pixel_values: shape (bs, num_image, num_tiles, 3, image_res, image_res)
        max_num_images = max_num_tiles = bs = 0
Mick's avatar
Mick committed
859
860
861
862
        for i, mm_input in enumerate(forward_batch.mm_inputs):

            if not forward_batch.encoder_cached[i] and mm_input is not None:
                pixel_values = torch.cat(
863
                    [item.feature for item in mm_input.mm_items], dim=0
Mick's avatar
Mick committed
864
865
866
867
                )
                max_num_images = max(max_num_images, pixel_values.shape[1])

                max_num_tiles = max(max_num_tiles, pixel_values.shape[2])
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
                bs += 1

        if max_num_images * max_num_tiles * bs == 0:
            return None, None, None, None

        with forward_batch.out_cache_loc.device:
            batched_images = torch.zeros(
                bs,
                max_num_images,
                max_num_tiles,
                3,
                self.image_size,
                self.image_size,
                dtype=torch.float32,
            )
            batched_ar_ids = torch.ones(
                bs, max_num_images, dtype=torch.int64, device="cuda"
            )
            batched_ar_mask = torch.zeros(
                bs, max_num_images, max_num_tiles, dtype=torch.int64
            )
            i = 0
            encoder_lens_need = []
Mick's avatar
Mick committed
891
892
893

            for k, mm_input in enumerate(forward_batch.mm_inputs):
                if forward_batch.encoder_cached[k] or mm_input is None:
894
895
896
                    continue

                encoder_lens_need.append(forward_batch.encoder_lens[k])
Mick's avatar
Mick committed
897
                pixel_values = torch.cat(
898
                    [item.feature for item in mm_input.mm_items], dim=0
Mick's avatar
Mick committed
899
900
901
                )
                for j in range(pixel_values.shape[1]):
                    img = pixel_values[0, j]
902
903
                    num_tiles = img.shape[0]
                    batched_images[i, j, :num_tiles] = img
Mick's avatar
Mick committed
904
905
906
907
908
                    batched_ar_ids[i, j] = mm_input.mm_items[0].aspect_ratio_id[0, j]

                    batched_ar_mask[i, j, :num_tiles] = mm_input.mm_items[
                        0
                    ].aspect_ratio_mask[0, j]
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
                i += 1

        return batched_images, batched_ar_ids, batched_ar_mask, encoder_lens_need

    def flat_encoder_result(
        self, cross_attention_states: torch.Tensor, encoder_lens_need: List[int]
    ):
        # NOTE: not all encoders need computation, some are cached
        head_dim = cross_attention_states.shape[-1]
        total_encoder_len = sum(encoder_lens_need)
        cross_attention_states_flat = torch.zeros(
            total_encoder_len,
            head_dim,
            device=cross_attention_states.device,
            dtype=cross_attention_states.dtype,
        )

        i = start_pos = 0
        for encoder_len in encoder_lens_need:
            if encoder_len == 0:
                continue
            end_pos = start_pos + encoder_len
            cross_attention_states_flat[start_pos:end_pos] = cross_attention_states[i][
                :encoder_len
            ]
            i += 1
            start_pos += encoder_len

        return cross_attention_states_flat

    def get_full_text_row_masked_out_mask(self, forward_batch: ForwardBatch):
        if forward_batch.forward_mode.is_decode():
            full_text_row_masked_out_mask = forward_batch.encoder_lens != 0
        else:
            full_text_row_masked_out_mask = torch.ones(
                forward_batch.extend_seq_lens.sum(), dtype=torch.bool
            )
            start_pos = 0

            for seq_len, encoder_len in zip(
                forward_batch.seq_lens.tolist(), forward_batch.encoder_lens_cpu
            ):
                if encoder_len == 0:
                    full_text_row_masked_out_mask[start_pos : start_pos + seq_len] = (
                        False
                    )
                start_pos += encoder_len

            full_text_row_masked_out_mask = full_text_row_masked_out_mask.to(
                forward_batch.seq_lens.device
            )

        return full_text_row_masked_out_mask.reshape(-1, 1)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
969
        from sglang.srt.model_executor.graph_runner import get_is_capture_mode
970

971
972
973
974
975
976
977
978
        batched_images, batched_ar_ids, batched_ar_mask, encoder_lens_need = (
            self._batch_image_inputs(forward_batch)
        )

        # TODO: support multi-image by this mask
        cross_attention_mask = None
        cross_attention_states = None

979
        if get_is_capture_mode():
980
981
            # NOTE: when doing cuda graph capture, we do not want to skip cross attention
            # Make is a constant value to avoid cuda graph capture issue
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
            skip_cross_attention = False
        else:
            # NOTE: we do not need image_inputs when prefill
            assert len(forward_batch.encoder_lens) == len(forward_batch.seq_lens)
            assert len(forward_batch.encoder_lens_cpu) == len(forward_batch.seq_lens)
            skip_cross_attention = forward_batch.encoder_lens.max() == 0

        if not skip_cross_attention:
            full_text_row_masked_out_mask = self.get_full_text_row_masked_out_mask(
                forward_batch
            )
        else:
            full_text_row_masked_out_mask = None

        if batched_images is not None:
            # NOTE: llama's reference implementation runs vision model on CPU
            cross_attention_states = self.vision_model(
                batched_images, batched_ar_ids, batched_ar_mask
            )
1001
1002
1003
            cross_attention_states, _ = self.multi_modal_projector(
                cross_attention_states
            )
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

            bs, _, _, _, image_token_dim = cross_attention_states.shape
            cross_attention_states = cross_attention_states.view(
                bs, -1, image_token_dim
            )

            cross_attention_states = self.flat_encoder_result(
                cross_attention_states, encoder_lens_need
            )

        hidden_states = self.language_model(
            input_ids=input_ids,
            positions=positions,
            cross_attention_states=cross_attention_states,
            cross_attention_mask=cross_attention_mask,
            full_text_row_masked_out_mask=full_text_row_masked_out_mask,
            forward_batch=forward_batch,
            skip_cross_attention=skip_cross_attention,
        )
        return self.logits_processor(
1024
            input_ids, hidden_states, self.language_model.lm_head, forward_batch
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
        )

    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            (".qkv_proj", ".q_proj", "q"),
            (".qkv_proj", ".k_proj", "k"),
            (".qkv_proj", ".v_proj", "v"),
            (".gate_up_proj", ".gate_proj", 0),
            (".gate_up_proj", ".up_proj", 1),
        ]
        params_dict = dict(self.named_parameters())
        updated_params = set()
        for name, loaded_weight in weights:
            if "patch_embedding.weight" in name:
                name = name.replace(
                    "patch_embedding.weight", "patch_embedding._linear.weight"
                )
                loaded_weight = loaded_weight.view(loaded_weight.shape[0], -1)
            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                param = params_dict[name]
                updated_params.add(name)
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
1054
1055
1056
                if "vision_model" in name:
                    # adapt to VisionAttention
                    name = name.replace("self_attn.o_proj", "self_attn.proj")
1057
1058
1059
1060
1061
1062
                param = params_dict.pop(name)
                weight_loader = getattr(param, "weight_loader", default_weight_loader)
                weight_loader(param, loaded_weight)


EntryClass = MllamaForConditionalGeneration