README.md 4.22 KB
Newer Older
Yineng Zhang's avatar
Yineng Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
## How to reproduce the benchmark results for SGLang v0.3.0 compared to vLLM v0.6.0

## Installation

```bash
# install sglang v0.3.0
pip install --upgrade pip
pip install "sglang[all]"==0.3.0
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/

# install vllm v0.6.0
pip install vllm==0.6.0
```

## Online benchmarks

```bash
# Llama 3.1 8B Instruct on 1 x A100
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --enable-torch-compile --disable-radix-cache
python -m vllm.entrypoints.openai.api_server --model meta-llama/Meta-Llama-3.1-8B-Instruct --disable-log-requests --num-scheduler-steps 10 --max_model_len 4096

# Llama 3.1 70B Instruct on 4 x H100
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-70B-Instruct --disable-radix-cache --tp 4
python -m vllm.entrypoints.openai.api_server --model meta-llama/Meta-Llama-3.1-70B-Instruct --disable-log-requests --num-scheduler-steps 10 --tensor 4 --max_model_len 4096

# bench serving
python3 -m sglang.bench_serving --backend sglang --dataset-name sharegpt --num-prompts 1200 --request-rate 4
python3 -m sglang.bench_serving --backend sglang --dataset-name sharegpt --num-prompts 2400 --request-rate 8
python3 -m sglang.bench_serving --backend vllm --dataset-name sharegpt --num-prompts 1200 --request-rate 4
python3 -m sglang.bench_serving --backend vllm --dataset-name sharegpt --num-prompts 2400 --request-rate 8
```

## Offline benchmarks

```bash
# Llama 3.1 8B Instruct on 1 x A100
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --enable-torch-compile --disable-radix-cache
python -m vllm.entrypoints.openai.api_server --model meta-llama/Meta-Llama-3.1-8B-Instruct --disable-log-requests --num-scheduler-steps 10 --max_model_len 4096

# Llama 3.1 70B Instruct on 4 x H100
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-70B-Instruct --disable-radix-cache --tp 4 --mem-frac 0.88
python -m vllm.entrypoints.openai.api_server --model meta-llama/Meta-Llama-3.1-70B-Instruct --disable-log-requests --num-scheduler-steps 10 --tensor 4 --max_model_len 4096

# bench serving
python3 -m sglang.bench_serving --backend sglang --dataset-name sharegpt --num-prompts 5000
python3 -m sglang.bench_serving --backend vllm --dataset-name sharegpt --num-prompts 5000
```

## Online benchmark results

### Llama 3.1 8B Instruct 1 x A100 80G

| RPS  | Num prompts | Engine | Median E2E Latency | Median TTFT | Median TPOT | Median ITL |
|------|-------------|--------|--------------------|-------------|-------------|------------|
| 4    | 1200        | SGLang | 1564.17            | 31.98       | 13.17       | 11.93      |
| 4    | 1200        | vLLM   | 1691.97            | 100.48      | 14.14       | 129.32     |
| 8    | 2400        | SGLang | 2175.02            | 35.68       | 17.85       | 14.41      |
| 8    | 2400        | vLLM   | 2137.16            | 120.39      | 17.09       | 158.63     |

### Llama 3.1 70B Insruct 4 x H100 80G

| RPS  | Num Prompts | Engine | Median E2E Latency | Median TTFT | Median TPOT | Median ITL |
|------|-------------|--------|--------------------|-------------|-------------|------------|
| 4    | 1200        | SGLang | 3005.24            | 53.94       | 25.03       | 21.67      |
| 4    | 1200        | vLLM   | 2915.60            | 179.15      | 23.58       | 231.23     |
| 8    | 2400        | SGLang | 4064.98            | 58.11       | 33.07       | 24.45      |
| 8    | 2400        | vLLM   | 3752.38            | 207.12      | 29.15       | 275.32     |

## Offline benchmark results

### Llama 3.1 8B Instruct 1 x A100 80G

| RPS  | Num Prompts | Engine | Request throughput | Output token throughput |
|------|-------------|--------|--------------------|-------------------------|
| inf  | 5000        | SGLang | 22.03              | 4281.51                 |
| inf  | 5000        | vLLM   | 21.27              | 4132.37                 |

### Llama 3.1 70B Insruct 4 x H100 80G

| RPS  | Num Prompts | Engine | Request throughput | Output token throughput |
|------|-------------|--------|--------------------|-------------------------|
| inf  | 5000        | SGLang | 19.84              | 3856.01                 |
| inf  | 5000        | vLLM   | 19.04              | 3700.64                 |