checkpoint_engine.md 7.18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Checkpoint Engine Integration

The SGLang checkpoint engine integration provides an efficient way to load model weights using a distributed checkpoint loading system. This feature significantly reduces model loading time, especially for large models and multi-node setups, by parallelizing the weight loading process across multiple processes and nodes.

## Overview

The checkpoint engine integration allows SGLang to:
- Load model weights in parallel using multiple processes
- Distribute weight loading across multiple nodes to increase effective disk bandwidth
- Overlap weight loading with other initialization tasks like CUDA graph capture
- Support both single-node and multi-node deployments

## Installation

First, install the checkpoint engine package:

```bash
pip install 'checkpoint-engine[p2p]'
```

## Architecture

The system consists of two main components:

1. **SGLang Server**: Runs with `--wait-for-initial-weights` flag to wait for weights before becoming ready
2. **Checkpoint Engine Workers**: Separate processes (managed by torchrun) that load and distribute model weights

The checkpoint engine uses a parameter server architecture with support for:
- **Broadcast mode**: Weights are broadcast from loading processes to inference processes
- **P2P mode**: Direct peer-to-peer weight transfer between processes
- **All mode**: Combination of both broadcast and P2P methods

## Usage Examples

### Single Node Setup

**Terminal 1 - Launch SGLang Server:**
```bash
python -m sglang.launch_server \
    --model-path Qwen/Qwen3-8B \
    --tp 8 \
    --load-format dummy \
    --wait-for-initial-weights
```

**Terminal 2 - Run Checkpoint Engine:**

Using sglang entrypoint:
```bash
python -m sglang.srt.checkpoint_engine.update \
    --update-method broadcast \
    --checkpoint-path /path/to/Qwen/Qwen3-8B/ \
    --inference-parallel-size 8
```

Using torchrun directly:
```bash
torchrun --nproc-per-node 8 \
    examples/checkpoint_engine/update.py \
    --update-method broadcast \
    --checkpoint-path /path/to/Qwen/Qwen3-8B/ \
    --inference-parallel-size 8
```

### Multi-Node Setup (2 Nodes)

**Node 0:**

Launch SGLang server:
```bash
python -m sglang.launch_server \
    --model-path Qwen/Qwen3-8B \
    --tp 8 \
    --load-format dummy \
    --wait-for-initial-weights \
    --host [IP]
```

Run checkpoint engine:

Using sglang entrypoint (recommended):
```bash
python -m sglang.srt.checkpoint_engine.update \
    --update-method broadcast \
    --checkpoint-path /path/to/Qwen/Qwen3-8B/ \
    --inference-parallel-size 8
```

Using torchrun directly:
```bash
torchrun --nproc-per-node 8 \
    --nnodes 2 \
    --node-rank 0 \
    --master-addr [IP] \
    --master-port 29500 \
    examples/checkpoint_engine/update.py \
    --update-method broadcast \
    --checkpoint-path /path/to/Qwen/Qwen3-8B/ \
    --inference-parallel-size 8
```

**Node 1:**

Launch SGLang server:
```bash
python -m sglang.launch_server \
    --model-path Qwen/Qwen3-8B \
    --tp 8 \
    --load-format dummy \
    --wait-for-initial-weights \
    --host [IP]
```

Run checkpoint engine:

Using sglang entrypoint (recommended):
```bash
python -m sglang.srt.checkpoint_engine.update \
    --update-method broadcast \
    --checkpoint-path /path/to/Qwen/Qwen3-8B/ \
    --inference-parallel-size 8
```

Using torchrun directly:
```bash
torchrun --nproc-per-node 8 \
    --nnodes 2 \
    --node-rank 1 \
    --master-addr [IP] \
    --master-port 29500 \
    examples/checkpoint_engine/update.py \
    --update-method broadcast \
    --checkpoint-path /path/to/Qwen/Qwen3-8B/ \
    --inference-parallel-size 8
```

### Multi-Node Setup with Tensor Parallelism (TP=16)

**Node 0:**

Launch SGLang server:
```bash
python -m sglang.launch_server \
    --model-path Qwen/Qwen3-8B \
    --tp 8 \
    --load-format dummy \
    --wait-for-initial-weights \
    --host [IP] \
    --dist-init-addr [IP]:9120 \
    --nnodes 2 \
    --node-rank 0
```

Run checkpoint engine:

Using sglang entrypoint (recommended):
```bash
python -m sglang.srt.checkpoint_engine.update \
    --update-method broadcast \
    --checkpoint-path /path/to/Qwen/Qwen3-8B/ \
    --inference-parallel-size 16
```

Using torchrun directly:
```bash
torchrun --nproc-per-node 8 \
    --nnodes 2 \
    --node-rank 0 \
    --master-addr [IP] \
    --master-port 29500 \
    examples/checkpoint_engine/update.py \
    --update-method broadcast \
    --checkpoint-path /path/to/Qwen/Qwen3-8B/ \
    --inference-parallel-size 16
```

**Node 1:**

Launch SGLang server:
```bash
python -m sglang.launch_server \
    --model-path Qwen/Qwen3-8B \
    --tp 8 \
    --load-format dummy \
    --wait-for-initial-weights \
    --host [IP] \
    --dist-init-addr [IP]:9120 \
    --nnodes 2 \
    --node-rank 1
```

Run checkpoint engine:

Using sglang entrypoint (recommended):
```bash
python -m sglang.srt.checkpoint_engine.update \
    --update-method broadcast \
    --checkpoint-path /path/to/Qwen/Qwen3-8B/ \
    --inference-parallel-size 16
```

Using torchrun directly:
```bash
torchrun --nproc-per-node 8 \
    --nnodes 2 \
    --node-rank 1 \
    --master-addr [IP] \
    --master-port 29500 \
    examples/checkpoint_engine/update.py \
    --update-method broadcast \
    --checkpoint-path /path/to/Qwen/Qwen3-8B/ \
    --inference-parallel-size 16
```

## Configuration Options

### SGLang Server Options

- `--load-format dummy`: Use dummy format for initial loading (allows overlapping with other tasks)
- `--wait-for-initial-weights`: Wait for checkpoint engine to provide weights before becoming ready
- `--host`: Host address for multi-node setups
- `--dist-init-addr`: Distributed initialization address for tensor parallelism

### Checkpoint Engine Options

- `--update-method`: Weight update method (`broadcast`, `p2p`, or `all`)
- `--checkpoint-path`: Path to model checkpoint directory
- `--inference-parallel-size`: Number of inference parallel processes
- `--endpoint`: SGLang server endpoint (default: `http://localhost:19730`)
- `--checkpoint-name`: Name for the checkpoint (default: `my-checkpoint-iter-0`)
- `--save-metas-file`: File to save checkpoint metadata
- `--load-metas-file`: File to load checkpoint metadata from
- `--uds`: Unix domain socket path for communication
- `--weight-version`: Version identifier for weights

## Performance Benefits

The checkpoint engine provides significant time savings in two main aspects:

1. **Multi-node Loading**: Each node only loads a portion of weights from disk, effectively increasing disk bandwidth. More participating nodes provide greater acceleration. Preliminary tests show 20-second acceleration when loading DeepSeek-R1 on H20-3e with two nodes.

2. **Single Process Optimization**: Using dummy format allows overlapping disk-to-CPU transfer with CUDA graph capture and other initialization tasks, providing additional time savings.

## Troubleshooting

- Ensure checkpoint engine package is installed: `pip install 'checkpoint-engine[p2p]'`
- Verify network connectivity between nodes in multi-node setups
- Check that the checkpoint path contains valid model files
- Monitor logs for connection errors between SGLang server and checkpoint engine
- Use `--sleep-time` parameter to add delays if needed for debugging

## References

- [Checkpoint Engine Repository](https://github.com/MoonshotAI/checkpoint-engine)