lora_bench.py 16.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

import argparse
import asyncio
import json
import os
import random
import resource
import sys
import time
import traceback
import warnings
from argparse import ArgumentParser
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any, AsyncGenerator, Dict, List, Optional, Tuple, Union

import aiohttp
import numpy as np
import requests
from launch_server import LORA_PATH, NUM_LORAS
from tqdm.asyncio import tqdm
from transformers import (
    AutoTokenizer,
    PreTrainedTokenizer,
    PreTrainedTokenizerBase,
    PreTrainedTokenizerFast,
)

from sglang.bench_serving import (
    AIOHTTP_TIMEOUT,
    SHAREGPT_URL,
    BenchmarkMetrics,
    RequestFuncInput,
    RequestFuncOutput,
    calculate_metrics,
    check_chat_template,
    get_model,
    get_request,
    get_tokenizer,
    parse_request_rate_range,
    remove_prefix,
    sample_random_requests,
)

global args


# set ignore_eos True by default
async def async_request_openai_completions(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    # assert api_url.endswith(
    #     "completions"
    # ), "OpenAI Completions API URL must end with 'completions'."

    prompt = request_func_input.prompt

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        # payload = {
        #     "model": request_func_input.model,
        #     "prompt": prompt,
        #     "temperature": 0.0,
        #     "best_of": 1,
        #     "max_tokens": request_func_input.output_len,
        #     "stream": not args.disable_stream,
        #     "ignore_eos": not args.disable_ignore_eos,
        #     **request_func_input.extra_request_body,
        # }
        # headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
        if args.base_only:
            payload = {
                "text": prompt,
                "sampling_params": {"max_new_tokens": request_func_input.output_len},
            }
        else:
            payload = {
                "text": prompt,
                "sampling_params": {"max_new_tokens": request_func_input.output_len},
                "lora_path": f"lora{random.randint(0, NUM_LORAS - 1)}",
            }
        headers = {"Authorization": ""}

        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        generated_text = ""
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(
                url=api_url, json=payload, headers=headers
            ) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
                        latency = time.perf_counter() - st
                        if chunk == "[DONE]":
                            pass
                        else:
                            data = json.loads(chunk)

                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
                            if data["text"]:
                                # if data["choices"][0]["text"]:
                                timestamp = time.perf_counter()
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
                                else:
                                    output.itl.append(timestamp - most_recent_timestamp)

                                most_recent_timestamp = timestamp
                                # generated_text += data["choices"][0]["text"]
                                generated_text += data["text"]

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
                    output.output_len = request_func_input.output_len
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    if pbar:
        pbar.update(1)
    return output


ASYNC_REQUEST_FUNCS = {
    "sglang": async_request_openai_completions,
}


async def benchmark(
    backend: str,
    api_url: str,
    model_id: str,
    tokenizer: PreTrainedTokenizerBase,
    input_requests: List[Tuple[str, int, int]],
    request_rate: float,
    disable_tqdm: bool,
    extra_request_body: Dict[str, Any],
):
    if backend in ASYNC_REQUEST_FUNCS:
        request_func = ASYNC_REQUEST_FUNCS[backend]
    else:
        raise ValueError(f"Unknown backend: {backend}")

    print("Starting initial single prompt test run...")
    test_prompt, test_prompt_len, test_output_len = input_requests[0]
    test_input = RequestFuncInput(
        model=model_id,
        prompt=test_prompt,
        api_url=api_url,
        prompt_len=test_prompt_len,
        output_len=test_output_len,
186
        lora_name="dummy",  # the lora_name argument will not be used
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        extra_request_body=extra_request_body,
    )
    test_output = await request_func(request_func_input=test_input)
    if not test_output.success:
        raise ValueError(
            "Initial test run failed - Please make sure benchmark arguments "
            f"are correctly specified. Error: {test_output.error}"
        )
    else:
        print("Initial test run completed. Starting main benchmark run...")

    pbar = None if disable_tqdm else tqdm(total=len(input_requests))

    benchmark_start_time = time.perf_counter()
    tasks: List[asyncio.Task] = []
    async for request in get_request(input_requests, request_rate):
        prompt, prompt_len, output_len = request
        request_func_input = RequestFuncInput(
            model=model_id,
            prompt=prompt,
            api_url=api_url,
            prompt_len=prompt_len,
            output_len=output_len,
210
            lora_name="dummy",
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
            extra_request_body=extra_request_body,
        )
        tasks.append(
            asyncio.create_task(
                request_func(request_func_input=request_func_input, pbar=pbar)
            )
        )
    outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)

    if pbar is not None:
        pbar.close()

    benchmark_duration = time.perf_counter() - benchmark_start_time

    metrics, output_lens = calculate_metrics(
        input_requests=input_requests,
        outputs=outputs,
        dur_s=benchmark_duration,
        tokenizer=tokenizer,
        backend=backend,
    )

    print("\n{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
    print("{:<40} {:<10}".format("Backend:", backend))
    print("{:<40} {:<10}".format("Traffic request rate:", request_rate))
    print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
    print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
    print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
    print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
    print(
        "{:<40} {:<10}".format(
            "Total generated tokens (retokenized):", metrics.total_output_retokenized
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Request throughput (req/s):", metrics.request_throughput
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Input token throughput (tok/s):", metrics.input_throughput
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Output token throughput (tok/s):", metrics.output_throughput
        )
    )
260
261
262
    print(
        "{:<40} {:<10.2f}".format("Total throughput (tok/s):", metrics.total_throughput)
    )
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
    print("{s:{c}^{n}}".format(s="End-to-End Latency", n=50, c="-"))
    print(
        "{:<40} {:<10.2f}".format("Mean E2E Latency (ms):", metrics.mean_e2e_latency_ms)
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Median E2E Latency (ms):", metrics.median_e2e_latency_ms
        )
    )
    print("{s:{c}^{n}}".format(s="Time to First Token", n=50, c="-"))
    print("{:<40} {:<10.2f}".format("Mean TTFT (ms):", metrics.mean_ttft_ms))
    print("{:<40} {:<10.2f}".format("Median TTFT (ms):", metrics.median_ttft_ms))
    print("{:<40} {:<10.2f}".format("P99 TTFT (ms):", metrics.p99_ttft_ms))
    print(
        "{s:{c}^{n}}".format(s="Time per Output Token (excl. 1st token)", n=50, c="-")
    )
    print("{:<40} {:<10.2f}".format("Mean TPOT (ms):", metrics.mean_tpot_ms))
    print("{:<40} {:<10.2f}".format("Median TPOT (ms):", metrics.median_tpot_ms))
    print("{:<40} {:<10.2f}".format("P99 TPOT (ms):", metrics.p99_tpot_ms))
    print("{s:{c}^{n}}".format(s="Inter-token Latency", n=50, c="-"))
    print("{:<40} {:<10.2f}".format("Mean ITL (ms):", metrics.mean_itl_ms))
    print("{:<40} {:<10.2f}".format("Median ITL (ms):", metrics.median_itl_ms))
    print("{:<40} {:<10.2f}".format("P99 ITL (ms):", metrics.p99_itl_ms))
    print("=" * 50)

    if (
        metrics.median_ttft_ms is not None
        and metrics.mean_itl_ms is not None
        and metrics.output_throughput is not None
    ):
        result = {
            "backend": args.backend,
            "request_rate": request_rate,
            "total_input_tokens": metrics.total_input,
            "total_output_tokens": metrics.total_output,
            "total_output_tokens_retokenized": metrics.total_output_retokenized,
            "mean_e2e_latency_ms": metrics.mean_e2e_latency_ms,
            "median_e2e_latency_ms": metrics.median_e2e_latency_ms,
            "median_ttft_ms": metrics.median_ttft_ms,
            "median_itl_ms": metrics.median_itl_ms,
            "output_throughput": metrics.output_throughput,
            "random_input_len": args.random_input_len,
            "random_output_len": args.random_output_len,
            "random_range_ratio": args.random_range_ratio,
            "duration": benchmark_duration,
            "completed": metrics.completed,
        }
    else:
        print(f"Error running benchmark for request rate: {request_rate}")
        print("-" * 30)

    # Determine output file name
    if args.output_file:
        output_file_name = args.output_file
    else:
        now = datetime.now().strftime("%m%d")
        output_file_name = f"{args.backend}_{now}_{args.num_prompts}_{args.random_input_len}_{args.random_output_len}.jsonl"

    # Append results to a JSONL file
    with open(output_file_name, "a") as file:
        file.write(json.dumps(result) + "\n")

    result = {
        "duration": benchmark_duration,
        "completed": metrics.completed,
        "total_input_tokens": metrics.total_input,
        "total_output_tokens": metrics.total_output,
        "total_output_tokens_retokenized": metrics.total_output_retokenized,
        "request_throughput": metrics.request_throughput,
        "input_throughput": metrics.input_throughput,
        "output_throughput": metrics.output_throughput,
        "mean_ttft_ms": metrics.mean_ttft_ms,
        "median_ttft_ms": metrics.median_ttft_ms,
        "std_ttft_ms": metrics.std_ttft_ms,
        "p99_ttft_ms": metrics.p99_ttft_ms,
        "mean_tpot_ms": metrics.mean_tpot_ms,
        "median_tpot_ms": metrics.median_tpot_ms,
        "std_tpot_ms": metrics.std_tpot_ms,
        "p99_tpot_ms": metrics.p99_tpot_ms,
        "mean_itl_ms": metrics.mean_itl_ms,
        "median_itl_ms": metrics.median_itl_ms,
        "std_itl_ms": metrics.std_itl_ms,
        "p99_itl_ms": metrics.p99_itl_ms,
        "input_lens": [output.prompt_len for output in outputs],
        "output_lens": output_lens,
        "ttfts": [output.ttft for output in outputs],
        "itls": [output.itl for output in outputs],
        "generated_texts": [output.generated_text for output in outputs],
        "errors": [output.error for output in outputs],
        "mean_e2e_latency_ms": metrics.mean_e2e_latency_ms,
        "median_e2e_latency_ms": metrics.median_e2e_latency_ms,
    }
    return result


def run_benchmark(args_: argparse.Namespace):
    global args
    args = args_

    # Set global environments
    set_ulimit()
    random.seed(args.seed)
    np.random.seed(args.seed)

    # Set url
    if args.port is None:
        args.port = {
            "sglang": 30000,
        }.get(args.backend, 30000)

    # api_url = (
    #     f"{args.base_url}/v1/completions"
    #     if args.base_url
    #     else f"http://{args.host}:{args.port}/v1/completions"
    # )
    api_url = (
        f"{args.base_url}/generate"
        if args.base_url
        else f"http://{args.host}:{args.port}/generate"
    )

    print(f"{args}\n")

    # Read dataset
    backend = args.backend
    model_id = args.model = LORA_PATH["base"]
    tokenizer_id = args.model

    tokenizer = get_tokenizer(tokenizer_id)

    input_requests = sample_random_requests(
        input_len=args.random_input_len,
        output_len=args.random_output_len,
        num_prompts=args.num_prompts,
        range_ratio=args.random_range_ratio,
        tokenizer=tokenizer,
        dataset_path="",
    )

    return asyncio.run(
        benchmark(
            backend=backend,
            api_url=api_url,
            model_id=model_id,
            tokenizer=tokenizer,
            input_requests=input_requests,
            request_rate=args.request_rate,
            disable_tqdm=False,
            extra_request_body={},
        )
    )


def set_ulimit(target_soft_limit=65535):
    resource_type = resource.RLIMIT_NOFILE
    current_soft, current_hard = resource.getrlimit(resource_type)

    if current_soft < target_soft_limit:
        try:
            resource.setrlimit(resource_type, (target_soft_limit, current_hard))
        except ValueError as e:
            print(f"Fail to set RLIMIT_NOFILE: {e}")


if __name__ == "__main__":
    parser = ArgumentParser(description="Benchmark the online lora serving throughput.")
    parser.add_argument(
        "--backend",
        type=str,
        choices=list(ASYNC_REQUEST_FUNCS.keys()),
        default="sglang",
        help="Must specify a backend, depending on the LLM Inference Engine.",
    )
    parser.add_argument(
        "--base-url",
        type=str,
        default=None,
        help="Server or API base url if not using http host and port.",
    )
    parser.add_argument(
        "--host", type=str, default="0.0.0.0", help="Default host is 0.0.0.0."
    )
    parser.add_argument(
        "--port",
        type=int,
        help="If not set, the default port is configured according to its default value for different LLM Inference Engines.",
    )
    parser.add_argument(
        "--num-prompts",
        type=int,
        default=50,
        help="Number of prompts to process. Default is 1000.",
    )
    parser.add_argument(
        "--random-input-len",
        type=int,
        default=1024,
        help="Number of input tokens per request, used only for random dataset.",
    )
    parser.add_argument(
        "--random-output-len",
        type=int,
        default=128,
        help="Number of output tokens per request, used only for random dataset.",
    )
    parser.add_argument(
        "--random-range-ratio",
        type=float,
        default=0.0,
        help="Range of sampled ratio of input/output length, "
        "used only for random dataset.",
    )
    parser.add_argument(
        "--request-rate",
        type=float,
        default=float("inf"),
        help="Number of requests per second. If this is inf, then all the requests are sent at time 0. "
        "Otherwise, we use Poisson process to synthesize the request arrival times. Default is inf.",
    )
    parser.add_argument(
        "--base-only",
        action="store_true",
    )
    parser.add_argument("--output-file", type=str, help="Output JSONL file name.")
    parser.add_argument("--seed", type=int, default=1, help="The random seed.")
    args = parser.parse_args()
    run_benchmark(args)