test_generation_models.py 4.27 KB
Newer Older
1
2
3
4
5
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9
10
11
12
13
14
15
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

16
import multiprocessing as mp
17
18
19
20
21
22
23
import unittest

import torch

from sglang.test.runners import DEFAULT_PROMPTS, HFRunner, SRTRunner

MODELS = [
24
25
26
    ("meta-llama/Meta-Llama-3.1-8B-Instruct", 1, 1.1, 3e-2, 1),
    ("google/gemma-2-2b", 1, 3, 3e-2, 1),
    ("Alibaba-NLP/gte-Qwen2-1.5B-instruct", 1, None, 6e-2, 1),
27
28
29
30
]
TORCH_DTYPES = [torch.float16]


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def lcs(X, Y):
    m = len(X)
    n = len(Y)
    L = [[0] * (n + 1) for _ in range(m + 1)]

    for i in range(m + 1):
        for j in range(n + 1):
            if i == 0 or j == 0:
                L[i][j] = 0
            elif X[i - 1] == Y[j - 1]:
                L[i][j] = L[i - 1][j - 1] + 1
            else:
                L[i][j] = max(L[i - 1][j], L[i][j - 1])

    return L[m][n]


def calculate_rouge_l(output_strs_list1, output_strs_list2):
    rouge_l_scores = []

    for s1, s2 in zip(output_strs_list1, output_strs_list2):
        lcs_len = lcs(s1, s2)
        precision = lcs_len / len(s1) if len(s1) > 0 else 0
        recall = lcs_len / len(s2) if len(s2) > 0 else 0
        if precision + recall > 0:
            fmeasure = (2 * precision * recall) / (precision + recall)
        else:
            fmeasure = 0.0
        rouge_l_scores.append(fmeasure)

    return rouge_l_scores


64
class TestGenerationModels(unittest.TestCase):
65

66
    def assert_close_prefill_logits_and_output_strs(
67
68
69
70
71
        self,
        prompts,
        model_path,
        tp_size,
        torch_dtype,
72
        max_new_tokens,
73
74
        prefill_tolerance,
        rouge_threshold,
75
        long_context_tolerance,
76
    ) -> None:
77
78
        if model_path == "Alibaba-NLP/gte-Qwen2-1.5B-instruct":
            prompts = prompts[:-1]
79
        with HFRunner(
80
            model_path, torch_dtype=torch_dtype, is_generation=True
81
        ) as hf_runner:
82
            hf_outputs = hf_runner.forward(prompts, max_new_tokens=max_new_tokens)
83
84
85
86
87

        with SRTRunner(
            model_path,
            tp_size=tp_size,
            torch_dtype=torch_dtype,
88
            is_generation=True,
89
        ) as srt_runner:
90
            srt_outputs = srt_runner.forward(prompts, max_new_tokens=max_new_tokens)
91
92
93
94
95

        for i in range(len(prompts)):
            hf_logprobs = torch.Tensor(hf_outputs.top_input_logprobs[i])
            srt_logprobs = torch.Tensor(srt_outputs.top_input_logprobs[i])

96
97
98
            print("max_diff", torch.max(abs(hf_logprobs - srt_logprobs)))
            if hf_logprobs.shape[0] <= 100:
                assert torch.all(
99
                    abs(hf_logprobs - srt_logprobs) < prefill_tolerance
100
                ), "prefill logprobs are not all close"
101

102
103
        print(hf_outputs.output_strs)
        print(srt_outputs.output_strs)
104
105
106
107
108
109
        rouge_l_scores = calculate_rouge_l(
            hf_outputs.output_strs, srt_outputs.output_strs
        )
        assert all(
            score >= rouge_threshold for score in rouge_l_scores
        ), f"Not all ROUGE-L scores are greater than {rouge_threshold}"
110

111
    def test_prefill_logits_and_output_strs(self):
112
113
114
115
116
117
118
        for (
            model,
            tp_size,
            long_context_tolerance,
            prefill_tolerance,
            rouge_threshold,
        ) in MODELS:
119
            for torch_dtype in TORCH_DTYPES:
120
121
122
123
124
125
126
                max_new_tokens = 8
                self.assert_close_prefill_logits_and_output_strs(
                    DEFAULT_PROMPTS,
                    model,
                    tp_size,
                    torch_dtype,
                    max_new_tokens,
127
128
                    prefill_tolerance=prefill_tolerance,
                    rouge_threshold=rouge_threshold,
129
                    long_context_tolerance=long_context_tolerance,
130
131
132
133
                )


if __name__ == "__main__":
134
135
136
137
138
    try:
        mp.set_start_method("spawn")
    except RuntimeError:
        pass

139
    unittest.main(warnings="ignore")