tuning_block_wise_fp8.py 11.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright 2025 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

import argparse
import json
import os
import time
from datetime import datetime
from typing import Any, Dict, List

import torch
import triton
from tqdm import tqdm

26
27
28
29
30
31
32
from sglang.srt.layers.quantization.fp8_kernel import (
    _w8a8_block_fp8_matmul,
    _w8a8_block_fp8_matmul_unrolledx4,
)
from sglang.srt.utils import get_device_core_count, get_device_name, is_hip

is_hip_ = is_hip()
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

DTYPE_MAP = {
    "float32": torch.float32,
    "float16": torch.float16,
    "half": torch.half,
    "bfloat16": torch.bfloat16,
}


def w8a8_block_fp8_matmul(
    A: torch.Tensor,
    B: torch.Tensor,
    As: torch.Tensor,
    Bs: torch.Tensor,
    block_size: List[int],
    config: Dict[str, Any],
    output_dtype: torch.dtype = torch.float16,
) -> torch.Tensor:
    """This function performs matrix multiplication with block-wise quantization.

    It takes two input tensors `A` and `B` with scales `As` and `Bs`.
    The output is returned in the specified `output_dtype`.

    Args:
        A: The input tensor, e.g., activation.
        B: The input tensor, e.g., weight.
        As: The per-token-group quantization scale for `A`.
        Bs: The per-block quantization scale for `B`.
        block_size: The block size for per-block quantization. It should be 2-dim, e.g., [128, 128].
        output_dytpe: The dtype of the returned tensor.

    Returns:
        torch.Tensor: The result of matmul.
    """
    assert len(block_size) == 2
    block_n, block_k = block_size[0], block_size[1]

    assert A.shape[-1] == B.shape[-1]
    assert A.shape[:-1] == As.shape[:-1] and A.is_contiguous()
    assert triton.cdiv(A.shape[-1], block_k) == As.shape[-1]
    M = A.numel() // A.shape[-1]

    assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2
    N, K = B.shape
    assert triton.cdiv(N, block_n) == Bs.shape[0]
    assert triton.cdiv(K, block_k) == Bs.shape[1]

    C_shape = A.shape[:-1] + (N,)
    C = A.new_empty(C_shape, dtype=output_dtype)

    def grid(META):
        return (
            triton.cdiv(M, META["BLOCK_SIZE_M"]) * triton.cdiv(N, META["BLOCK_SIZE_N"]),
        )

88
89
90
91
92
93
94
95
96
97
98
99
100
    # Use manually unrolledx4 kernel on AMD GPU when the grid size is small.
    # Empirical testing shows the sweet spot lies when it's less than the # of
    # compute units available on the device.
    num_workgroups = triton.cdiv(M, config["BLOCK_SIZE_M"]) * triton.cdiv(
        N, config["BLOCK_SIZE_N"]
    )
    kernel = (
        _w8a8_block_fp8_matmul_unrolledx4
        if (is_hip_ == True and num_workgroups <= get_device_core_count())
        else _w8a8_block_fp8_matmul
    )

    kernel[grid](
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        A,
        B,
        C,
        As,
        Bs,
        M,
        N,
        K,
        block_n,
        block_k,
        A.stride(-2),
        A.stride(-1),
        B.stride(1),
        B.stride(0),
        C.stride(-2),
        C.stride(-1),
        As.stride(-2),
        As.stride(-1),
        Bs.stride(1),
        Bs.stride(0),
        **config,
    )

    return C


127
def get_rocm_configs_compute_bound():
128
    configs = []
129
130
131
132
133
    waves_per_eu_range = 0
    for num_stages in [2]:
        for block_m in [32, 64, 128, 256]:
            for block_k in [32, 64, 128, 256]:
                for block_n in [16, 32, 64, 128, 256]:
134
                    for num_warps in [4, 8]:
135
                        for group_size in [1, 4, 8, 16, 32]:
136
137
138
139
140
141
142
143
                            configs.append(
                                {
                                    "BLOCK_SIZE_M": block_m,
                                    "BLOCK_SIZE_N": block_n,
                                    "BLOCK_SIZE_K": block_k,
                                    "GROUP_SIZE_M": group_size,
                                    "num_warps": num_warps,
                                    "num_stages": num_stages,
144
                                    "waves_per_eu": waves_per_eu_range,
145
146
147
148
149
                                }
                            )
    return configs


150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
def get_configs_compute_bound():
    configs = []
    if is_hip_:
        configs = get_rocm_configs_compute_bound()
    else:
        for num_stages in [2, 3, 4, 5]:
            for block_m in [16, 32, 64, 128, 256]:
                for block_k in [64, 128]:
                    for block_n in [32, 64, 128, 256]:
                        for num_warps in [4, 8]:
                            for group_size in [1, 16, 32, 64]:
                                configs.append(
                                    {
                                        "BLOCK_SIZE_M": block_m,
                                        "BLOCK_SIZE_N": block_n,
                                        "BLOCK_SIZE_K": block_k,
                                        "GROUP_SIZE_M": group_size,
                                        "num_warps": num_warps,
                                        "num_stages": num_stages,
                                    }
                                )
    return configs


174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
def get_weight_shapes(tp_size):
    # NOTE(HandH1998): The weight shapes only works for DeepSeek-V3. Modify them, if you tune for another different model.
    # cannot TP
    total = [
        (512 + 64, 7168),
        ((128 + 64) * 128, 7168),
        (128 * (128 + 128), 512),
        (7168, 16384),
        (7168, 18432),
    ]
    # N can TP
    n_tp = [
        (18432 * 2, 7168),
        ((128 + 64) * 128, 7168),
        (128 * (128 + 128), 512),
        (24576, 1536),
        (4096, 7168),
    ]
    # K can TP
    k_tp = [(7168, 18432), (7168, 16384), (7168, 2048)]

    weight_shapes = []
    for t in total:
        weight_shapes.append(t)
    for n_t in n_tp:
        new_t = (n_t[0] // tp_size, n_t[1])
        weight_shapes.append(new_t)
    for k_t in k_tp:
        new_t = (k_t[0], k_t[1] // tp_size)
        weight_shapes.append(new_t)
    return weight_shapes


def benchmark_config(
    A_fp8, B_fp8, As, Bs, block_size, config, out_dtype=torch.float16, num_iters=10
):
    def run():
        w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size, config, out_dtype)

    torch.cuda.synchronize()
    # JIT complication & warmup
    for _ in range(5):
        run()
    torch.cuda.synchronize()

    start_event = torch.cuda.Event(enable_timing=True)
    end_event = torch.cuda.Event(enable_timing=True)

    latencies: List[float] = []
    for i in range(num_iters):
        torch.cuda.synchronize()
        start_event.record()
        run()
        end_event.record()
        end_event.synchronize()
        latencies.append(start_event.elapsed_time(end_event))
    avg = sum(latencies) / (num_iters * 10) * 1000  # us
    return avg


def tune(M, N, K, block_size, out_dtype, search_space):
    factor_for_scale = 1e-2
236
    fp8_info = torch.finfo(torch.float8_e4m3fnuz if is_hip_ else torch.float8_e4m3fn)
237
238
239
    fp8_max, fp8_min = fp8_info.max, fp8_info.min

    A_fp32 = (torch.rand(M, K, dtype=torch.float32, device="cuda") - 0.5) * 2 * fp8_max
240
241
242
    A_fp8 = A_fp32.clamp(min=fp8_min, max=fp8_max).to(
        torch.float8_e4m3fnuz if is_hip_ else torch.float8_e4m3fn
    )
243
244

    B_fp32 = (torch.rand(N, K, dtype=torch.float32, device="cuda") - 0.5) * 2 * fp8_max
245
246
247
    B_fp8 = B_fp32.clamp(min=fp8_min, max=fp8_max).to(
        torch.float8_e4m3fnuz if is_hip_ else torch.float8_e4m3fn
    )
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

    block_n, block_k = block_size[0], block_size[1]
    n_tiles = (N + block_n - 1) // block_n
    k_tiles = (K + block_k - 1) // block_k

    As = torch.rand(M, k_tiles, dtype=torch.float32, device="cuda") * factor_for_scale
    Bs = (
        torch.rand(n_tiles, k_tiles, dtype=torch.float32, device="cuda")
        * factor_for_scale
    )

    best_config = None
    best_time = float("inf")
    for config in tqdm(search_space):
        try:
            kernel_time = benchmark_config(
                A_fp8,
                B_fp8,
                As,
                Bs,
                block_size,
                config,
                out_dtype,
                num_iters=10,
            )
        except triton.runtime.autotuner.OutOfResources:
            # Some configurations may be invalid and fail to compile.
            continue

        if kernel_time < best_time:
            best_time = kernel_time
            best_config = config
    now = datetime.now()
    print(f"{now.ctime()}] Completed tuning for batch_size={M}")
    assert best_config is not None
    return best_config


def save_configs(
    N,
    K,
    block_n,
    block_k,
    configs,
    save_path,
) -> None:
    os.makedirs(save_path, exist_ok=True)
    device_name = get_device_name().replace(" ", "_")
    json_file_name = f"N={N},K={K},device_name={device_name},dtype=fp8_w8a8,block_shape=[{block_n}, {block_k}].json"

    config_file_path = os.path.join(save_path, json_file_name)
    print(f"Writing best config to {config_file_path}...")

    with open(config_file_path, "w") as f:
        json.dump(configs, f, indent=4)
        f.write("\n")


def main(args):
    print(args)

    block_n = args.block_n
    block_k = args.block_k

    tp_size = args.tp_size
    assert args.out_dtype in ["float32", "float16", "bfloat16", "half"]
    out_dtype = DTYPE_MAP[args.out_dtype]
    save_path = args.save_path

    search_space = get_configs_compute_bound()
    search_space = [
        config for config in search_space if block_k % config["BLOCK_SIZE_K"] == 0
    ]

    if args.batch_size is None:
        batch_sizes = [
            1,
            2,
            4,
            8,
            16,
            24,
            32,
            48,
            64,
            96,
            128,
            256,
            512,
            1024,
            1536,
            2048,
            3072,
            4096,
        ]
    else:
        batch_sizes = [args.batch_size]

    print(f"Start tuning over {len(search_space)} configurations...")

    weight_shapes = get_weight_shapes(tp_size)
    start = time.time()
    for shape in tqdm(weight_shapes):
        N, K = shape[0], shape[1]
        print(f"Tune for weight shape of `N: {N}, K: {K}`")
        benchmark_results = [
            tune(batch_size, N, K, [block_n, block_k], out_dtype, search_space)
            for batch_size in batch_sizes
        ]
        best_configs = {M: config for M, config in zip(batch_sizes, benchmark_results)}
        save_configs(N, K, block_n, block_k, best_configs, save_path)

    end = time.time()
    print(f"Tuning took {end - start:.2f} seconds")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument("--tp-size", "-tp", type=int, default=8)
    parser.add_argument(
        "--out-dtype",
        type=str,
        choices=["float32", "float16", "bfloat16", "half"],
        default="float16",
    )
    parser.add_argument("--block-n", type=int, default=128)
    parser.add_argument("--block-k", type=int, default=128)
    parser.add_argument("--batch-size", type=int, required=False)
    parser.add_argument(
        "--save-path", type=str, default="python/sglang/srt/layers/quantization/configs"
    )
    args = parser.parse_args()

    main(args)