CMakeLists.txt 17.6 KB
Newer Older
1
2
3
cmake_minimum_required(VERSION 3.26 FATAL_ERROR)
project(sgl-kernel LANGUAGES CXX CUDA)

4
# CMake
5
cmake_policy(SET CMP0169 OLD)
6
cmake_policy(SET CMP0177 NEW)
7
include(${CMAKE_CURRENT_LIST_DIR}/cmake/utils.cmake)
8
9
10
11
set(CMAKE_COLOR_DIAGNOSTICS ON)
set(CMAKE_VERBOSE_MAKEFILE ON CACHE BOOL "ON")
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
set(CMAKE_SHARED_LIBRARY_PREFIX "")
12

13
# Python
14
find_package(Python COMPONENTS Interpreter Development.Module ${SKBUILD_SABI_COMPONENT} REQUIRED)
15

16
17
18
19
# CXX
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3")

Yineng Zhang's avatar
Yineng Zhang committed
20
# CUDA
21
22
enable_language(CUDA)
find_package(CUDAToolkit REQUIRED)
23
set_property(GLOBAL PROPERTY CUDA_SEPARABLE_COMPILATION ON)
24
25

message(STATUS "Detected CUDA_VERSION=${CUDA_VERSION}")
Johnny's avatar
Johnny committed
26
27
28
if ("${CUDA_VERSION}" VERSION_GREATER_EQUAL "13.0")
    message("CUDA_VERSION ${CUDA_VERSION} >= 13.0")
elseif ("${CUDA_VERSION}" VERSION_GREATER_EQUAL "12.8")
29
30
31
32
33
34
35
36
37
    message("CUDA_VERSION ${CUDA_VERSION} >= 12.8")
elseif ("${CUDA_VERSION}" VERSION_GREATER_EQUAL "12.4")
    message("CUDA_VERSION ${CUDA_VERSION} >= 12.4")
elseif ("${CUDA_VERSION}" VERSION_GREATER_EQUAL "12.1")
    message("CUDA_VERSION ${CUDA_VERSION} >= 12.1")
elseif ("${CUDA_VERSION}" VERSION_GREATER_EQUAL "11.8")
    message("CUDA_VERSION ${CUDA_VERSION} >= 11.8")
endif()

38
# Torch
39
find_package(Torch REQUIRED)
40
41
# clean Torch Flag
clear_cuda_arches(CMAKE_FLAG)
42
43
44

include(FetchContent)

45
# cutlass
46
47
48
FetchContent_Declare(
    repo-cutlass
    GIT_REPOSITORY https://github.com/NVIDIA/cutlass
49
    GIT_TAG        a49a78ffefc86a87160dfe0ccc3a3a2d1622c918
Zhiqiang Xie's avatar
Zhiqiang Xie committed
50
    GIT_SHALLOW    OFF
51
52
)
FetchContent_Populate(repo-cutlass)
53

54
# DeepGEMM
55
56
FetchContent_Declare(
    repo-deepgemm
57
58
    GIT_REPOSITORY https://github.com/sgl-project/DeepGEMM
    GIT_TAG        sgl
Zhiqiang Xie's avatar
Zhiqiang Xie committed
59
    GIT_SHALLOW    OFF
60
61
)
FetchContent_Populate(repo-deepgemm)
62

63
64
65
66
67
68
69
70
FetchContent_Declare(
    repo-fmt
    GIT_REPOSITORY https://github.com/fmtlib/fmt
    GIT_TAG        553ec11ec06fbe0beebfbb45f9dc3c9eabd83d28
    GIT_SHALLOW    OFF
)
FetchContent_Populate(repo-fmt)

71
72
73
74
75
76
77
78
79
# Triton
FetchContent_Declare(
    repo-triton
    GIT_REPOSITORY "https://github.com/triton-lang/triton"
    GIT_TAG        8f9f695ea8fde23a0c7c88e4ab256634ca27789f
    GIT_SHALLOW    OFF
)
FetchContent_Populate(repo-triton)

80
# flashinfer
81
82
FetchContent_Declare(
    repo-flashinfer
83
    GIT_REPOSITORY https://github.com/flashinfer-ai/flashinfer.git
84
    GIT_TAG        1a85c439a064c1609568675aa580a409a53fb183
85
86
87
    GIT_SHALLOW    OFF
)
FetchContent_Populate(repo-flashinfer)
88

89
90
91
92
# flash-attention
FetchContent_Declare(
    repo-flash-attention
    GIT_REPOSITORY https://github.com/sgl-project/sgl-attn
93
94
    GIT_TAG        sgl-kernel
    GIT_SHALLOW    OFF
95
96
)
FetchContent_Populate(repo-flash-attention)
97

98
99
100
101
102
103
104
105
# mscclpp
FetchContent_Declare(
    repo-mscclpp
    GIT_REPOSITORY https://github.com/microsoft/mscclpp.git
    GIT_TAG        51eca89d20f0cfb3764ccd764338d7b22cd486a6
    GIT_SHALLOW    OFF
)
FetchContent_Populate(repo-mscclpp)
106

107
108
109
110
111
112
113
114
# ccache option
option(ENABLE_CCACHE "Whether to use ccache" ON)
find_program(CCACHE_FOUND ccache)
if(CCACHE_FOUND AND ENABLE_CCACHE AND DEFINED ENV{CCACHE_DIR})
    message(STATUS "Building with CCACHE enabled")
    set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE "ccache")
    set_property(GLOBAL PROPERTY RULE_LAUNCH_LINK "ccache")
endif()
115

116
117
118
119
120
121
122
123
# Enable gencode below SM90
option(ENABLE_BELOW_SM90 "Enable below SM90" ON)

if (CMAKE_SYSTEM_PROCESSOR MATCHES "aarch64")
    set(ENABLE_BELOW_SM90 OFF)
    message(STATUS "For aarch64, disable gencode below SM90 by default")
endif()

124
125
126
127
128
129
130
include_directories(
    ${PROJECT_SOURCE_DIR}/include
    ${PROJECT_SOURCE_DIR}/csrc
    ${repo-cutlass_SOURCE_DIR}/include
    ${repo-cutlass_SOURCE_DIR}/tools/util/include
    ${repo-flashinfer_SOURCE_DIR}/include
    ${repo-flashinfer_SOURCE_DIR}/csrc
131
    ${repo-mscclpp_SOURCE_DIR}/include
132
133
134
135
136
137
138
139
140
141
142
)

set(SGL_KERNEL_CUDA_FLAGS
    "-DNDEBUG"
    "-DOPERATOR_NAMESPACE=sgl-kernel"
    "-O3"
    "-Xcompiler"
    "-fPIC"
    "-gencode=arch=compute_90,code=sm_90"
    "-std=c++17"
    "-DFLASHINFER_ENABLE_F16"
143
    "-DCUTE_USE_PACKED_TUPLE=1"
144
145
146
147
148
149
    "-DCUTLASS_ENABLE_TENSOR_CORE_MMA=1"
    "-DCUTLASS_VERSIONS_GENERATED"
    "-DCUTLASS_TEST_LEVEL=0"
    "-DCUTLASS_TEST_ENABLE_CACHED_RESULTS=1"
    "-DCUTLASS_DEBUG_TRACE_LEVEL=0"
    "--expt-relaxed-constexpr"
150
    "--expt-extended-lambda"
151
152
153
154
    # The following flag leads to the CMAKE_BUILD_PARALLEL_LEVEL breaking,
    # it triggers OOM with low memory host. Extract the threads number to
    # option named SGL_KERNEL_COMPILE_THREADS, default value 32.
    # "--threads=32"
155

156
157
158
159
160
161
162
163
    # Supress warnings
    "-Xcompiler=-Wno-clang-format-violations"
    "-Xcompiler=-Wno-conversion"
    "-Xcompiler=-Wno-deprecated-declarations"
    "-Xcompiler=-Wno-terminate"
    "-Xcompiler=-Wfatal-errors"
    "-Xcompiler=-ftemplate-backtrace-limit=1"
    "-Xcudafe=--diag_suppress=177"  # variable was declared but never referenced
164
165
166
167

    # uncomment to debug
    # "--ptxas-options=-v"
    # "--ptxas-options=--verbose,--register-usage-level=10,--warn-on-local-memory-usage"
168
169
)

170
171
172
173
174
175
176
177
178
179
180
181
182
183
set(SGL_KERNEL_COMPILE_THREADS 32 CACHE STRING "Set compilation threads, default 32")

# When SGL_KERNEL_COMPILE_THREADS value is less than 1, set it to 1
if (NOT SGL_KERNEL_COMPILE_THREADS MATCHES "^[0-9]+$")
    message(FATAL_ERROR "SGL_KERNEL_COMPILE_THREADS must be an integer, but was set to '${SGL_KERNEL_COMPILE_THREADS}'.")
elseif (SGL_KERNEL_COMPILE_THREADS LESS 1)
    message(STATUS "SGL_KERNEL_COMPILE_THREADS was set to a value less than 1. Using 1 instead.")
    set(SGL_KERNEL_COMPILE_THREADS 1)
endif()

list(APPEND SGL_KERNEL_CUDA_FLAGS
    "--threads=${SGL_KERNEL_COMPILE_THREADS}"
)

184
185
186
187
option(SGL_KERNEL_ENABLE_BF16             "Enable BF16"             ON)
option(SGL_KERNEL_ENABLE_FP8              "Enable FP8"              ON)
option(SGL_KERNEL_ENABLE_FP4              "Enable FP4"              OFF)
option(SGL_KERNEL_ENABLE_FA3              "Enable FA3"              OFF)
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
option(SGL_KERNEL_ENABLE_SM90A            "Enable SM90A"            OFF)
option(SGL_KERNEL_ENABLE_SM100A           "Enable SM100A"           OFF)

if (SGL_KERNEL_ENABLE_BF16)
    list(APPEND SGL_KERNEL_CUDA_FLAGS
        "-DFLASHINFER_ENABLE_BF16"
    )
endif()

if (SGL_KERNEL_ENABLE_FP8)
    list(APPEND SGL_KERNEL_CUDA_FLAGS
        "-DFLASHINFER_ENABLE_FP8"
        "-DFLASHINFER_ENABLE_FP8_E4M3"
        "-DFLASHINFER_ENABLE_FP8_E5M2"
    )
endif()
204

205
206
207
208
209
210
211
if (ENABLE_BELOW_SM90)
    list(APPEND SGL_KERNEL_CUDA_FLAGS
        "-gencode=arch=compute_80,code=sm_80"
        "-gencode=arch=compute_89,code=sm_89"
    )
endif()

212
if ("${CUDA_VERSION}" VERSION_GREATER_EQUAL "12.8" OR SGL_KERNEL_ENABLE_SM100A)
213
214
    list(APPEND SGL_KERNEL_CUDA_FLAGS
        "-gencode=arch=compute_100a,code=sm_100a"
215
        "-gencode=arch=compute_120a,code=sm_120a"
216
    )
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

    # refer sm_121, sm_110 and sm_101 description  https://github.com/pytorch/pytorch/pull/156176
    if ("${CUDA_VERSION}" VERSION_GREATER_EQUAL "13.0")
        list(APPEND SGL_KERNEL_CUDA_FLAGS
            "-gencode=arch=compute_103a,code=sm_103a"
            "-gencode=arch=compute_110a,code=sm_110a"
            "-gencode=arch=compute_121a,code=sm_121a"
            "--compress-mode=size"
        )
    else()
        list(APPEND SGL_KERNEL_CUDA_FLAGS
            "-gencode=arch=compute_101a,code=sm_101a"
        )
    endif()

232
233
234
235
236
237
238
else()
    list(APPEND SGL_KERNEL_CUDA_FLAGS
        "-use_fast_math"
    )
endif()

if ("${CUDA_VERSION}" VERSION_GREATER_EQUAL "12.4" OR SGL_KERNEL_ENABLE_SM90A)
239
    set(SGL_KERNEL_ENABLE_FA3 ON)
240
241
242
243
244
    list(APPEND SGL_KERNEL_CUDA_FLAGS
        "-gencode=arch=compute_90a,code=sm_90a"
    )
endif()

245
if ("${CUDA_VERSION}" VERSION_GREATER_EQUAL "12.8" OR SGL_KERNEL_ENABLE_FP4)
246
247
248
249
250
    list(APPEND SGL_KERNEL_CUDA_FLAGS
        "-DENABLE_NVFP4=1"
    )
endif()

251
set(SOURCES
252
    "csrc/allreduce/custom_all_reduce.cu"
253
    "csrc/allreduce/mscclpp_allreduce.cu"
Yineng Zhang's avatar
Yineng Zhang committed
254
    "csrc/attention/cascade.cu"
255
    "csrc/attention/cutlass_mla_kernel.cu"
256
    "csrc/attention/lightning_attention_decode_kernel.cu"
257
258
    "csrc/attention/merge_attn_states.cu"
    "csrc/attention/vertical_slash_index.cu"
259
    "csrc/elementwise/activation.cu"
260
    "csrc/elementwise/cast.cu"
261
    "csrc/elementwise/copy.cu"
262
263
    "csrc/elementwise/fused_add_rms_norm_kernel.cu"
    "csrc/elementwise/rope.cu"
264
    "csrc/common_extension.cc"
265

266
267
    "csrc/gemm/awq_kernel.cu"
    "csrc/gemm/bmm_fp8.cu"
268
    "csrc/gemm/dsv3_fused_a_gemm.cu"
269
270
271
    "csrc/gemm/dsv3_router_gemm_bf16_out.cu"
    "csrc/gemm/dsv3_router_gemm_entry.cu"
    "csrc/gemm/dsv3_router_gemm_float_out.cu"
272
273
274
    "csrc/gemm/fp8_blockwise_gemm_kernel.cu"
    "csrc/gemm/fp8_gemm_kernel.cu"
    "csrc/gemm/int8_gemm_kernel.cu"
275
    "csrc/gemm/nvfp4_expert_quant.cu"
276
277
278
279
280
281
282
    "csrc/gemm/nvfp4_quant_entry.cu"
    "csrc/gemm/nvfp4_quant_kernels.cu"
    "csrc/gemm/nvfp4_scaled_mm_entry.cu"
    "csrc/gemm/nvfp4_scaled_mm_kernels.cu"
    "csrc/gemm/per_tensor_quant_fp8.cu"
    "csrc/gemm/per_token_group_quant_8bit.cu"
    "csrc/gemm/per_token_quant_fp8.cu"
HandH1998's avatar
HandH1998 committed
283
284
    "csrc/gemm/qserve_w4a8_per_chn_gemm.cu"
    "csrc/gemm/qserve_w4a8_per_group_gemm.cu"
285
286
287
288
    "csrc/gemm/marlin/gptq_marlin.cu"
    "csrc/gemm/marlin/gptq_marlin_repack.cu"
    "csrc/gemm/marlin/awq_marlin_repack.cu"
    "csrc/gemm/gptq/gptq_kernel.cu"
289

290
    "csrc/grammar/apply_token_bitmask_inplace_cuda.cu"
291

292
293
294
    "csrc/moe/cutlass_moe/w4a8/scaled_mm_entry.cu"
    "csrc/moe/cutlass_moe/w4a8/w4a8_moe_data.cu"
    "csrc/moe/cutlass_moe/w4a8/w4a8_grouped_mm_c3x.cu"
295
    "csrc/moe/marlin_moe_wna16/ops.cu"
296
297
298
299
300
301
    "csrc/moe/moe_align_kernel.cu"
    "csrc/moe/moe_fused_gate.cu"
    "csrc/moe/moe_topk_softmax_kernels.cu"
    "csrc/moe/nvfp4_blockwise_moe.cu"
    "csrc/moe/fp8_blockwise_moe_kernel.cu"
    "csrc/moe/prepare_moe_input.cu"
302
303

    "csrc/memory/store.cu"
304
    "csrc/kvcacheio/transfer.cu"
305

306
307
308
    "csrc/speculative/eagle_utils.cu"
    "csrc/speculative/packbit.cu"
    "csrc/speculative/speculative_sampling.cu"
309

310
311
312
    "${repo-flashinfer_SOURCE_DIR}/csrc/norm.cu"
    "${repo-flashinfer_SOURCE_DIR}/csrc/renorm.cu"
    "${repo-flashinfer_SOURCE_DIR}/csrc/sampling.cu"
313

314
315
316
317
318
    "${repo-flash-attention_SOURCE_DIR}/csrc/flash_attn/src/flash_fwd_sparse_hdim128_bf16_causal_sm80.cu"
    "${repo-flash-attention_SOURCE_DIR}/csrc/flash_attn/src/flash_fwd_sparse_hdim128_bf16_sm80.cu"
    "${repo-flash-attention_SOURCE_DIR}/csrc/flash_attn/src/flash_fwd_sparse_hdim128_fp16_causal_sm80.cu"
    "${repo-flash-attention_SOURCE_DIR}/csrc/flash_attn/src/flash_fwd_sparse_hdim128_fp16_sm80.cu"
    "${repo-flash-attention_SOURCE_DIR}/csrc/flash_attn/flash_sparse_api.cpp"
319
320
)

321
322
323
324
Python_add_library(common_ops MODULE USE_SABI ${SKBUILD_SABI_VERSION} WITH_SOABI ${SOURCES})

target_compile_options(common_ops PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:${SGL_KERNEL_CUDA_FLAGS}>)
target_include_directories(common_ops PRIVATE
325
326
327
328
    ${repo-cutlass_SOURCE_DIR}/examples/77_blackwell_fmha
    ${repo-cutlass_SOURCE_DIR}/examples/common
    ${repo-flash-attention_SOURCE_DIR}/csrc/flash_attn/src
)
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

find_package(Python3 COMPONENTS Interpreter REQUIRED)
execute_process(
    COMMAND ${Python3_EXECUTABLE} -c "import torch; print(int(torch._C._GLIBCXX_USE_CXX11_ABI))"
    OUTPUT_VARIABLE TORCH_CXX11_ABI
    OUTPUT_STRIP_TRAILING_WHITESPACE
)
if(TORCH_CXX11_ABI STREQUAL "0")
    message(STATUS "Using old C++ ABI (-D_GLIBCXX_USE_CXX11_ABI=0)")
    set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -D_GLIBCXX_USE_CXX11_ABI=0")
    set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -D_GLIBCXX_USE_CXX11_ABI=0")
else()
    message(STATUS "Using new C++11 ABI (-D_GLIBCXX_USE_CXX11_ABI=1)")
    set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -D_GLIBCXX_USE_CXX11_ABI=1")
    set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -D_GLIBCXX_USE_CXX11_ABI=1")
endif()
345
346

# mscclpp
347
348
349
set(MSCCLPP_USE_CUDA ON)
set(MSCCLPP_BYPASS_GPU_CHECK ON)
set(MSCCLPP_BUILD_TESTS OFF)
350
351
352
353
add_subdirectory(
    ${repo-mscclpp_SOURCE_DIR}
    ${CMAKE_CURRENT_BINARY_DIR}/mscclpp-build
)
354
target_link_libraries(common_ops PRIVATE ${TORCH_LIBRARIES} c10 cuda cublas cublasLt mscclpp_static)
355

356
# flash attention
357
target_compile_definitions(common_ops PRIVATE
358
359
360
361
    FLASHATTENTION_DISABLE_BACKWARD
    FLASHATTENTION_DISABLE_DROPOUT
    FLASHATTENTION_DISABLE_UNEVEN_K
)
362

363
install(TARGETS common_ops LIBRARY DESTINATION sgl_kernel)
364
365

# ============================ Optional Install ============================= #
366
# set flash-attention sources file
367
# Now FA3 support sm80/sm86/sm90
368
if (SGL_KERNEL_ENABLE_FA3)
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
    set(SGL_FLASH_KERNEL_CUDA_FLAGS
        "-DNDEBUG"
        "-DOPERATOR_NAMESPACE=sgl-kernel"
        "-O3"
        "-Xcompiler"
        "-fPIC"
        "-gencode=arch=compute_90a,code=sm_90a"
        "-std=c++17"
        "-DCUTE_USE_PACKED_TUPLE=1"
        "-DCUTLASS_ENABLE_TENSOR_CORE_MMA=1"
        "-DCUTLASS_VERSIONS_GENERATED"
        "-DCUTLASS_TEST_LEVEL=0"
        "-DCUTLASS_TEST_ENABLE_CACHED_RESULTS=1"
        "-DCUTLASS_DEBUG_TRACE_LEVEL=0"
        "--expt-relaxed-constexpr"
        "--expt-extended-lambda"
        "--use_fast_math"
        "-Xcompiler=-Wconversion"
        "-Xcompiler=-fno-strict-aliasing"
    )

390
391
392
393
394
395
396
397
398
    if (ENABLE_BELOW_SM90)
        list(APPEND SGL_FLASH_KERNEL_CUDA_FLAGS
            "-gencode=arch=compute_80,code=sm_80"
            "-gencode=arch=compute_86,code=sm_86"
        )
        # SM8X Logic
        file(GLOB FA3_SM8X_GEN_SRCS
            "${repo-flash-attention_SOURCE_DIR}/hopper/instantiations/flash_fwd_hdim*_sm80.cu")
    endif()
399

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
    file(GLOB FA3_BF16_GEN_SRCS
        "${repo-flash-attention_SOURCE_DIR}/hopper/instantiations/flash_fwd_hdimall_bf16*_sm90.cu")
    file(GLOB FA3_BF16_GEN_SRCS_
        "${repo-flash-attention_SOURCE_DIR}/hopper/instantiations/flash_fwd_hdimdiff_bf16*_sm90.cu")
    list(APPEND FA3_BF16_GEN_SRCS ${FA3_BF16_GEN_SRCS_})

    # FP16 source files
    file(GLOB FA3_FP16_GEN_SRCS
        "${repo-flash-attention_SOURCE_DIR}/hopper/instantiations/flash_fwd_hdimall_fp16*_sm90.cu")
    file(GLOB FA3_FP16_GEN_SRCS_
        "${repo-flash-attention_SOURCE_DIR}/hopper/instantiations/flash_fwd_hdimdiff_fp16*_sm90.cu")
    list(APPEND FA3_FP16_GEN_SRCS ${FA3_FP16_GEN_SRCS_})

    # FP8 source files
    file(GLOB FA3_FP8_GEN_SRCS
        "${repo-flash-attention_SOURCE_DIR}/hopper/instantiations/flash_fwd_hdimall_e4m3*_sm90.cu")
    file(GLOB FA3_FP8_GEN_SRCS_
        "${repo-flash-attention_SOURCE_DIR}/hopper/instantiations/flash_fwd_hdimdiff_e4m3*_sm90.cu")
    list(APPEND FA3_FP8_GEN_SRCS ${FA3_FP8_GEN_SRCS_})

420
    set(FA3_GEN_SRCS ${FA3_BF16_GEN_SRCS} ${FA3_FP16_GEN_SRCS} ${FA3_FP8_GEN_SRCS} ${FA3_SM8X_GEN_SRCS})
421
422
423
424
425
426
427
428
429
430
431
432

    set(FLASH_SOURCES
        "csrc/flash_extension.cc"
        "${repo-flash-attention_SOURCE_DIR}/hopper/flash_prepare_scheduler.cu"
        "${repo-flash-attention_SOURCE_DIR}/hopper/flash_api.cpp"
        "${repo-flash-attention_SOURCE_DIR}/hopper/flash_fwd_combine.cu"
        "${FA3_GEN_SRCS}"
    )

    Python_add_library(flash_ops MODULE USE_SABI ${SKBUILD_SABI_VERSION} WITH_SOABI ${FLASH_SOURCES})

    target_compile_options(flash_ops PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:${SGL_FLASH_KERNEL_CUDA_FLAGS}>)
433
    target_include_directories(flash_ops PRIVATE
434
435
        ${repo-flash-attention_SOURCE_DIR}/hopper
    )
436
437
438
    target_link_libraries(flash_ops PRIVATE ${TORCH_LIBRARIES} c10 cuda)

    install(TARGETS flash_ops LIBRARY DESTINATION "sgl_kernel")
439
    set(FLASH_OPS_COMPILE_DEFS
440
441
442
443
444
        FLASHATTENTION_DISABLE_BACKWARD
        FLASHATTENTION_DISABLE_DROPOUT
        FLASHATTENTION_DISABLE_UNEVEN_K
        FLASHATTENTION_VARLEN_ONLY
    )
445
446
447
448
449

    if(NOT ENABLE_BELOW_SM90)
        list(APPEND FLASH_OPS_COMPILE_DEFS FLASHATTENTION_DISABLE_SM8x)
    endif()
    target_compile_definitions(flash_ops PRIVATE ${FLASH_OPS_COMPILE_DEFS})
450
451
endif()

452
453
454
455
456
457
458
459
460
461
462
463
# Build spatial_ops as a separate, optional extension for green contexts
set(SPATIAL_SOURCES
    "csrc/spatial/greenctx_stream.cu"
    "csrc/spatial_extension.cc"
)

Python_add_library(spatial_ops MODULE USE_SABI ${SKBUILD_SABI_VERSION} WITH_SOABI ${SPATIAL_SOURCES})
target_compile_options(spatial_ops PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:${SGL_KERNEL_CUDA_FLAGS}>)
target_link_libraries(spatial_ops PRIVATE ${TORCH_LIBRARIES} c10 cuda)
install(TARGETS spatial_ops LIBRARY DESTINATION sgl_kernel)


464
465
466
467
468
469
# ============================ DeepGEMM (JIT) ============================= #
# Create a separate library for DeepGEMM's Python API.
# This keeps its compilation isolated from the main common_ops.
set(DEEPGEMM_SOURCES
    "${repo-deepgemm_SOURCE_DIR}/csrc/python_api.cpp"
)
470

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
Python_add_library(deep_gemm_cpp MODULE USE_SABI ${SKBUILD_SABI_VERSION} WITH_SOABI ${DEEPGEMM_SOURCES})

# Link against necessary libraries, including nvrtc for JIT compilation.
target_link_libraries(deep_gemm_cpp PRIVATE ${TORCH_LIBRARIES} c10 cuda nvrtc mscclpp_static)

# Add include directories needed by DeepGEMM.
target_include_directories(deep_gemm_cpp PRIVATE
    ${repo-deepgemm_SOURCE_DIR}/deep_gemm/include
    ${repo-cutlass_SOURCE_DIR}/include
    ${repo-fmt_SOURCE_DIR}/include
)

# Apply the same compile options as common_ops.
target_compile_options(deep_gemm_cpp PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:${SGL_KERNEL_CUDA_FLAGS}>)

# Create an empty __init__.py to make `deepgemm` a Python package.
file(WRITE ${CMAKE_CURRENT_BINARY_DIR}/deepgemm_pkg_init.py "")
install(
    FILES ${CMAKE_CURRENT_BINARY_DIR}/deepgemm_pkg_init.py
    DESTINATION deep_gemm
    RENAME __init__.py
)

# Install the compiled DeepGEMM API library.
install(TARGETS deep_gemm_cpp LIBRARY DESTINATION deep_gemm)

# Install the source files required by DeepGEMM for runtime JIT compilation.
install(
    DIRECTORY ${repo-deepgemm_SOURCE_DIR}/deep_gemm/
    DESTINATION deep_gemm
)
502
503
504
505
506
507

install(DIRECTORY "${repo-cutlass_SOURCE_DIR}/include/cute/"
        DESTINATION "deep_gemm/include/cute")

install(DIRECTORY "${repo-cutlass_SOURCE_DIR}/include/cutlass/"
        DESTINATION "deep_gemm/include/cutlass")
508
509
510
511
512
513

# triton_kernels
install(DIRECTORY "${repo-triton_SOURCE_DIR}/python/triton_kernels/triton_kernels/"
        DESTINATION "triton_kernels"
        PATTERN ".git*" EXCLUDE
        PATTERN "__pycache__" EXCLUDE)