bench_client.py 4.71 KB
Newer Older
1
2
3
4
5
6
7
8
9
import concurrent.futures
import logging
import random
import time
from typing import List

import torch
from tqdm import tqdm

10
from sglang.srt.mem_cache.storage.hf3fs.hf3fs_usrbio_client import Hf3fsUsrBioClient
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31


def print_stats(x: List[int]):
    x = sorted(x)
    lenx = len(x)
    print(
        f"mean = {sum(x)/len(x):.2f}, "
        f"min = {min(x):.2f}, "
        f"p25 = {x[int(lenx*0.25)]:.2f}, "
        f"p50 = {x[int(lenx*0.5)]:.2f}, "
        f"p75 = {x[int(lenx*0.75)]:.2f}, "
        f"max = {max(x):.2f}"
    )


def test():
    # /path/to/hf3fs
    file_path = "/data/bench.bin"
    file_size = 1 << 40
    bytes_per_page = 16 << 20
    entries = 32
32
    file_ops = Hf3fsUsrBioClient(file_path, file_size, bytes_per_page, entries)
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

    print("test batch_read / batch_write")
    num_pages = 128
    dtype = torch.bfloat16
    numel = bytes_per_page // dtype.itemsize
    offsets = list(range(file_size // bytes_per_page))
    random.shuffle(offsets)
    offsets = offsets[:num_pages]
    offsets = [i * bytes_per_page for i in offsets]
    tensor_writes = [
        torch.randn(numel, dtype=dtype)
        for _ in tqdm(range(num_pages), desc="prepare tensor")
    ]
    for i in tqdm(range(0, num_pages, file_ops.entries), desc="batch_write"):
        results = file_ops.batch_write(
            offsets[i : i + file_ops.entries], tensor_writes[i : i + file_ops.entries]
        )
        assert all([result == numel * dtype.itemsize for result in results])
    tensor_reads = [
        torch.empty(numel, dtype=dtype)
        for _ in tqdm(range(num_pages), desc="prepare tensor")
    ]
    for i in tqdm(range(0, num_pages, file_ops.entries), desc="batch_read"):
        results = file_ops.batch_read(
            offsets[i : i + file_ops.entries], tensor_reads[i : i + file_ops.entries]
        )
        assert all([result == numel * dtype.itemsize for result in results])
    assert all([torch.allclose(r, w) for r, w in zip(tensor_reads, tensor_writes)])

    file_ops.close()
    print("test done")


def bench():
    file_path = "/data/bench.bin"
    file_size = 1 << 40
    bytes_per_page = 16 << 20
    entries = 8
    numjobs = 16

    dtype = torch.bfloat16
    numel = bytes_per_page // dtype.itemsize

    file_ops = [
77
        Hf3fsUsrBioClient(file_path, file_size, bytes_per_page, entries)
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        for _ in range(numjobs)
    ]

    num_page = entries

    offsets = list(range(file_size // bytes_per_page))
    tensors_write = [torch.randn(numel, dtype=dtype)] * num_page
    tensors_read = [torch.empty(numel, dtype=dtype)] * num_page
    random.shuffle(offsets)

    warmup = 50
    iteration = 100

    executor = concurrent.futures.ThreadPoolExecutor(max_workers=numjobs)

    w_bw = []
    w_size = num_page * numjobs * bytes_per_page / (1 << 30)
    for i in tqdm(range(warmup + iteration), desc="Benchmarking write (GB/s)"):
        _offsets = [
            [
                offset * bytes_per_page
                for offset in offsets[
                    (i * numjobs + j) * num_page : (i * numjobs + j + 1) * num_page
                ]
            ]
            for j in range(numjobs)
        ]
        tik = time.perf_counter()
        futures = [
            executor.submit(file_ops[j].batch_write, offset, tensors_write)
            for j, offset in enumerate(_offsets)
        ]
        results = [future.result() for future in futures]
        tok = time.perf_counter()
        if i < warmup:
            continue
        w_bw.append(w_size / (tok - tik))
        results = [
            _result == bytes_per_page for result in results for _result in result
        ]
        assert all(results)
    print_stats(w_bw)

    r_bw = []
    r_size = w_size
    for i in tqdm(range(warmup + iteration), desc="Benchmarking read (GB/s)"):
        _offsets = [
            [
                offset * bytes_per_page
                for offset in offsets[
                    (i * numjobs + j) * num_page : (i * numjobs + j + 1) * num_page
                ]
            ]
            for j in range(numjobs)
        ]
        tik = time.perf_counter()
        futures = [
            executor.submit(file_ops[j].batch_read, offset, tensors_read)
            for j, offset in enumerate(_offsets)
        ]
        results = [future.result() for future in futures]
        tok = time.perf_counter()
        if i < warmup:
            continue
        r_bw.append(r_size / (tok - tik))
        results = [
            _result == bytes_per_page for result in results for _result in result
        ]
        assert all(results)
    print_stats(r_bw)

    executor.shutdown(wait=True)
    for _file_ops in file_ops:
        _file_ops.close()
    print("bench done")


def main():
    logging.basicConfig(level=logging.INFO)
    test()
    bench()


if __name__ == "__main__":
    main()