bench_dsv3_router_gemm.py 2.84 KB
Newer Older
1
2
3
4
5
6
7
8
9
import argparse

import torch
import torch.nn.functional as F
import triton
import triton.testing
from sgl_kernel import dsv3_router_gemm


10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=["num_tokens"],
        x_vals=[i + 1 for i in range(16)],
        x_log=False,
        line_arg="impl",
        line_vals=["torch", "sgl-kernel"],
        line_names=["torch", "dsv3_router_gemm"],
        styles=[("blue", "-"), ("orange", "-")],
        ylabel="TFLOPs",
        plot_name="input-bf16-output-bf16 dsv3 router gemm throughput",
        args={},
    )
)
def benchmark_bf16_output(num_tokens, impl):
    # M: num_tokens, K: hidden_dim, N: num_experts
    M, K, N = num_tokens, 7168, 256

    mat_a = torch.randn((M, K), dtype=torch.bfloat16, device="cuda").contiguous()
    mat_b = torch.randn((N, K), dtype=torch.bfloat16, device="cuda").contiguous()

    quantiles = [0.5, 0.2, 0.8]

    if impl == "torch":

        def runner():
            F.linear(mat_a, mat_b)

    elif impl == "sgl-kernel":

        def runner():
            dsv3_router_gemm(mat_a, mat_b, out_dtype=torch.bfloat16)

    ms, min_ms, max_ms = triton.testing.do_bench(runner, quantiles=quantiles)

    def tflops(t_ms):
        flops = 2 * M * K * N
        return flops / (t_ms * 1e-3) / 1e12

    return tflops(ms), tflops(max_ms), tflops(min_ms)


52
53
54
55
56
57
58
59
60
61
62
63
64
65
@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=["num_tokens"],
        x_vals=[i + 1 for i in range(16)],
        x_log=False,
        line_arg="impl",
        line_vals=["torch", "sgl-kernel"],
        line_names=["torch", "dsv3_router_gemm"],
        styles=[("blue", "-"), ("orange", "-")],
        ylabel="TFLOPs",
        plot_name="input-bf16-output-fp32 dsv3 router gemm throughput",
        args={},
    )
)
66
def benchmark_float_output(num_tokens, impl):
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    # M: num_tokens, K: hidden_dim, N: num_experts
    M, K, N = num_tokens, 7168, 256

    mat_a = torch.randn((M, K), dtype=torch.bfloat16, device="cuda").contiguous()
    mat_b = torch.randn((N, K), dtype=torch.bfloat16, device="cuda").contiguous()

    quantiles = [0.5, 0.2, 0.8]

    if impl == "torch":

        def runner():
            F.linear(mat_a, mat_b).to(torch.float32)

    elif impl == "sgl-kernel":

        def runner():
83
            dsv3_router_gemm(mat_a, mat_b, out_dtype=torch.float32)
84
85
86
87
88
89
90
91
92
93
94
95
96
97

    ms, min_ms, max_ms = triton.testing.do_bench(runner, quantiles=quantiles)

    def tflops(t_ms):
        flops = 2 * M * K * N
        return flops / (t_ms * 1e-3) / 1e12

    return tflops(ms), tflops(max_ms), tflops(min_ms)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    args = parser.parse_args()

98
99
100
101
102
103
    benchmark_bf16_output.run(
        print_data=True, show_plots=True, save_path="bench_dsv3_router_gemm"
    )
    benchmark_float_output.run(
        print_data=True, show_plots=True, save_path="bench_dsv3_router_gemm"
    )