test_wave_attention_kernels.py 10.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import random
import unittest

import torch

from sglang.srt.layers.attention.triton_ops.decode_attention import (
    decode_attention_fwd_grouped as triton_decode_attention_fwd_grouped,
)
from sglang.srt.layers.attention.triton_ops.extend_attention import (
    extend_attention_fwd,
    redundant_attention,
)
from sglang.srt.layers.attention.triton_ops.prefill_attention import (
    context_attention_fwd,
)
from sglang.srt.layers.attention.wave_ops.decode_attention import (
    decode_attention_intermediate_arrays_shapes,
    decode_attention_wave,
)
from sglang.srt.layers.attention.wave_ops.extend_attention import extend_attention_wave
from sglang.srt.layers.attention.wave_ops.prefill_attention import (
    prefill_attention_wave,
)


class TestWaveAttention(unittest.TestCase):

    def _set_all_seeds(self, seed):
        """Set all random seeds for reproducibility."""
        random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False

    def setUp(self):
        # Set seeds before each test method
        self._set_all_seeds(42)

    def _test_extend_attention_once(self, B, N_CTX, H_Q, H_KV, D):
        dtype = torch.float16
        extend_seq_len = 1024

        b_seq_len_prefix = torch.full(
            (B,), N_CTX // B, dtype=torch.int32, device="cuda"
        )
        b_seq_len_extend = torch.full(
            (B,), extend_seq_len, dtype=torch.int32, device="cuda"
        )
        b_seq_len = b_seq_len_prefix + b_seq_len_extend
        max_len_in_batch = torch.max(b_seq_len, 0)[0].item()

        b_req_idx = torch.arange(B, dtype=torch.int32, device="cuda")
        b_start_loc = torch.zeros((B,), dtype=torch.int32, device="cuda")
        b_start_loc[1:] = torch.cumsum(b_seq_len[:-1], 0)
        b_start_loc_extend = torch.zeros((B,), dtype=torch.int32, device="cuda")
        b_start_loc_extend[1:] = torch.cumsum(b_seq_len_extend[:-1], 0)

        kv_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda")
        kv_indptr[1 : B + 1] = torch.cumsum(b_seq_len_prefix[:B], dim=0)
        kv_indices = torch.zeros(
            (b_seq_len_prefix.sum().item(),), dtype=torch.int32, device="cuda"
        )

        for i in range(B):
            kv_indices[kv_indptr[i] : kv_indptr[i + 1]] = torch.arange(
                b_start_loc[i], b_start_loc[i] + b_seq_len_prefix[i]
            )

        total_token_num = torch.sum(b_seq_len).item()
        extend_token_num = torch.sum(b_seq_len_extend).item()
        k_buffer = torch.empty(
            (total_token_num, H_KV, D), dtype=dtype, device="cuda"
        ).normal_(mean=0.1, std=0.2)
        v_buffer = torch.empty(
            (total_token_num, H_KV, D), dtype=dtype, device="cuda"
        ).normal_(mean=0.1, std=0.2)

        k_extend = torch.empty((extend_token_num, H_KV, D), dtype=dtype, device="cuda")
        v_extend = torch.empty((extend_token_num, H_KV, D), dtype=dtype, device="cuda")
        q_extend = torch.empty((extend_token_num, H_Q, D), dtype=dtype, device="cuda")
        for i in range(B):
            extend_start_in_buffer = b_start_loc[i] + b_seq_len_prefix[i]
            extend_end_in_buffer = b_start_loc[i] + b_seq_len[i]
            extend_start = b_start_loc_extend[i]
            extend_end = b_start_loc_extend[i] + b_seq_len_extend[i]
            k_extend[extend_start:extend_end] = k_buffer[
                extend_start_in_buffer:extend_end_in_buffer
            ]
            v_extend[extend_start:extend_end] = v_buffer[
                extend_start_in_buffer:extend_end_in_buffer
            ]
            q_extend[extend_start:extend_end] = torch.empty(
                (b_seq_len_extend[i], H_Q, D), dtype=dtype, device="cuda"
            ).normal_(mean=0.1, std=0.2)

        o_extend = torch.empty((extend_token_num, H_Q, D), dtype=dtype, device="cuda")
        o_extend_mask = torch.empty(
            (extend_token_num, H_Q, D), dtype=dtype, device="cuda"
        )
        o_redundant = torch.empty(
            (extend_token_num, H_Q, D), dtype=dtype, device="cuda"
        )

        b_seq_len_extend = b_seq_len - b_seq_len_prefix
        max_len_extend = torch.max(b_seq_len_extend, 0)[0].item()
        qo_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda")
        qo_indptr[1 : B + 1] = torch.cumsum(b_seq_len_extend[:B], dim=0)

        custom_mask = None
        mask_indptr = None

        redundant_attention(
            q_extend,
            o_redundant,
            k_buffer,
            v_buffer,
            b_req_idx,
            b_start_loc,
            b_seq_len,
            b_seq_len_prefix,
            max_len_in_batch,
        )

        is_causal = True

        o_extend = torch.empty((extend_token_num, H_Q, D), dtype=dtype, device="cuda")
        extend_attention_fwd(
            q_extend,
            k_extend,
            v_extend,
            o_extend,
            k_buffer,
            v_buffer,
            qo_indptr,
            kv_indptr,
            kv_indices,
            custom_mask,
            is_causal,
            mask_indptr,
            max_len_extend,
        )

        o_wave = torch.empty((extend_token_num, H_Q, D), dtype=dtype, device="cuda")
        extend_attention_wave(
            q_extend,
            k_extend,
            v_extend,
            k_buffer,
            v_buffer,
            qo_indptr,
            kv_indptr,
            kv_indices,
            custom_mask,
            mask_indptr,
            max_len_extend,
            o_wave,
            is_causal=is_causal,
        )

        self.assertTrue(torch.allclose(o_extend, o_redundant, rtol=1e-2))
        self.assertTrue(torch.allclose(o_wave, o_redundant, rtol=1e-2))

    def test_extend_attention(self):

        # Define the varying parameter values
        attention_values = [128]

        # Loop through the values and call the method
        for value in attention_values:
            self._test_extend_attention_once(32, 16384, 6, 1, value)

    def _test_grouped_decode_attention_once(self, B, S, H_Q, H_KV, D, D_V):
        dtype = torch.float16
        seq_len = S  # This represents the number of tokens already in the sequence
        total_tokens = B * seq_len
        sm_scale = 1.0 / (D**0.5)
        max_kv_splits = 8
        num_kv_splits = torch.full((B,), 4, dtype=torch.int32, device="cuda")

        # q represents the new token being generated, one per batch
        q = torch.randn(B, H_Q, D, dtype=dtype, device="cuda")

        # k_buffer and v_buffer represent all previous tokens
        k_buffer = torch.randn(total_tokens, H_KV, D, dtype=dtype, device="cuda")
        v_buffer = torch.randn(total_tokens, H_KV, D_V, dtype=dtype, device="cuda")

        # o will have the same shape as q
        o_triton = torch.zeros(B, H_Q, D_V, dtype=dtype, device="cuda")
        o = torch.zeros(B, H_Q, D_V, dtype=dtype, device="cuda")

        req_to_token = torch.arange(total_tokens, device="cuda", dtype=torch.int32)
        b_req_idx = torch.zeros(B + 1, device="cuda", dtype=torch.int32)
        b_seq_len = torch.full((B,), seq_len, device="cuda", dtype=torch.int32)
        b_req_idx[1 : B + 1] = torch.cumsum(b_seq_len, dim=0)

        attn_logits = torch.empty(
            (B, H_Q, max_kv_splits, D_V + 1),
            dtype=torch.float32,
            device="cuda",
        )
        attn_lse = torch.empty(
            (B, H_Q, max_kv_splits),
            dtype=torch.float32,
            device="cuda",
        )

        logit_cap = 0.0
        triton_decode_attention_fwd_grouped(
            q,
            k_buffer,
            v_buffer,
            o_triton,
            b_req_idx,
            req_to_token,
            attn_logits,
            attn_lse,
            num_kv_splits,
            max_kv_splits,
            sm_scale,
            logit_cap,
        )

        attn_logits_shape, attn_logits_max_shape = (
            decode_attention_intermediate_arrays_shapes(B, D_V, H_Q, max_kv_splits)
        )

        attn_logits = torch.empty(
            attn_logits_shape,
            dtype=torch.float32,
            device="cuda",
        )

        attn_logits_max = torch.empty(
            attn_logits_max_shape,
            dtype=torch.float32,
            device="cuda",
        )

        decode_attention_wave(
            q,
            k_buffer,
            v_buffer,
            o,
            b_req_idx,
            req_to_token,
            attn_logits,
            attn_logits_max,
            num_kv_splits,
            max_kv_splits,
            sm_scale,
            logit_cap,
        )

        cos_sim = torch.nn.functional.cosine_similarity(
            o.flatten(), o_triton.flatten(), dim=0
        )
        print(cos_sim.item())
        self.assertTrue(cos_sim.item() > 0.99)
        self.assertTrue(torch.allclose(o, o_triton, atol=3e-2))

    def test_grouped_decode_attention(self):
        seq_lens = [5, 100, 128, 500]
        configs = [
            (2, 16, 16, 64, 64),
            (2, 16, 1, 64, 64),
            (2, 128, 1, 80, 80),
            (32, 128, 2, 512, 512),
            (2, 128, 2, 512, 512),
            (2, 128, 1, 576, 512),
        ]

        for S in seq_lens:
            for B, H_Q, H_KV, D, D_V in configs:
                self._test_grouped_decode_attention_once(B, S, H_Q, H_KV, D, D_V)

    def _test_context_attention_once(self, head_dim, is_causal):
        # Set up a simple test case
        dtype = torch.float16
        num_heads = 4
        kv_heads = 1
        seq_lens = [128, 256]
        max_seq_len = max(seq_lens)

        # Create random input tensors
        q = torch.randn(sum(seq_lens), num_heads, head_dim, dtype=dtype, device="cuda")
        k = torch.randn(sum(seq_lens), kv_heads, head_dim, dtype=dtype, device="cuda")
        v = torch.randn(sum(seq_lens), kv_heads, head_dim, dtype=dtype, device="cuda")
        o_triton = torch.zeros(
            sum(seq_lens), num_heads, head_dim, dtype=dtype, device="cuda"
        )
        o = torch.zeros(sum(seq_lens), num_heads, head_dim, dtype=dtype, device="cuda")

        # Create b_start_loc and b_seq_len tensors
        b_start_loc = torch.tensor([0, seq_lens[0]], device="cuda")
        b_seq_len = torch.tensor(seq_lens, device="cuda")

        context_attention_fwd(
            q, k, v, o_triton, b_start_loc, b_seq_len, max_seq_len, is_causal=is_causal
        )
        prefill_attention_wave(
            q, k, v, o, b_start_loc, b_seq_len, max_seq_len, is_causal=is_causal
        )
        cos_sim = torch.nn.functional.cosine_similarity(
            o.flatten(), o_triton.flatten(), dim=0
        )

        print(cos_sim.item())
        self.assertTrue(torch.allclose(o, o_triton, atol=3e-2))
        self.assertTrue(cos_sim.item() > 1 - (1e-5))

    def test_context_attention(self):
        head_dim = [128, 96]

        for dim in head_dim:
            for is_causal in [False]:
                self._test_context_attention_once(dim, is_causal)


if __name__ == "__main__":
    unittest.main()