bench_serving.py 36.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
# Adapted from https://github.com/vllm-project/vllm/blob/6366efc67b0aedd2c1721c14385370e50b297fb3/benchmarks/backend_request_func.py
# Adapted from https://github.com/vllm-project/vllm/blob/6366efc67b0aedd2c1721c14385370e50b297fb3/benchmarks/benchmark_serving.py

"""
Benchmark online serving with dynamic requests.

Usage:
python3 -m sglang.bench_serving --backend sglang --num-prompt 10

python3 -m sglang.bench_serving --backend sglang --dataset-name random --num-prompts 3000 --random-input 1024 --random-output 1024 --random-range-ratio 0.5
python3 -m sglang.bench_serving --backend sglang --dataset-name random --request-rate-range 1,2,4,8,16,32 --random-input 4096 --random-output 1024 --random-range-ratio 0.125 --multi
"""

import argparse
import asyncio
import json
import os
import random
import sys
import time
import traceback
import warnings
from argparse import ArgumentParser
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any, AsyncGenerator, Dict, List, Optional, Tuple, Union

import aiohttp
import numpy as np
import requests
from data_processing import MsgContent, SampleOutput, get_dataset
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase

from sglang.bench_serving import get_tokenizer, remove_prefix, set_ulimit

AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=20 * 60 * 60)

global args


@dataclass
class RequestFuncInput:
    prompts: List[Tuple[MsgContent, int, int]]
    api_url: str
    model: str
    lora_name: str
    extra_request_body: Dict[str, Any]

    # For multiturn chat, store the context
    prev_messages: List = field(default_factory=list)
    finished_prompts: int = 0


@dataclass
class RequestFuncOutput:
    generated_text: List[str] = field(default_factory=list)
    prompt_len: List[int] = field(default_factory=list)
    output_len: List[int] = field(default_factory=list)
    latency: List[float] = field(default_factory=list)
    ttft: List[float] = field(default_factory=list)
    itl: List[float] = field(default_factory=list)  # List of inter-token latencies

    success: bool = False
    error: str = ""


# set ignore_eos True by default
async def async_request_openai_completions(
    request_func_input: RequestFuncInput,
    queue: asyncio.Queue,
    tokenizer: PreTrainedTokenizerBase,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith(
        "completions"
    ), "OpenAI Completions API URL must end with 'completions'."

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "model": request_func_input.model,
            "temperature": 0.0,
            "best_of": 1,
            "stream": not args.disable_stream,
            "stream_options": {"include_usage": True},
            "ignore_eos": not args.disable_ignore_eos,
            **request_func_input.extra_request_body,
        }
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
        }

        output = RequestFuncOutput()

        prompt_idx = request_func_input.finished_prompts
        messages = request_func_input.prev_messages
        prompt, input_len, max_tokens = request_func_input.prompts[prompt_idx]
        prompt_len = sum(
            prompt[1] + prompt[2]  # input_len + output_len
            for prompt in request_func_input.prompts[:prompt_idx]
        )
        prompt_len += input_len

        # Messages
        messages.append(
            {
                "role": "user",
                "content": prompt,
            }
        )
        payload["messages"] = messages
        payload["max_tokens"] = max_tokens

        # output.prompt_len = request_func_input.prompt_len
        # print(payload)

        generated_text = ""
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(
                url=api_url, json=payload, headers=headers
            ) as response:
                if response.status == 200:
                    actual_prompt_len = prompt_len - 1
                    actual_output_len = 0
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
                        latency = time.perf_counter() - st
                        if chunk == "[DONE]":
                            pass
                        else:
                            data = json.loads(chunk)
                            timestamp = time.perf_counter()
                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
                            if data["usage"] is not None and len(data["usage"]) > 0:
                                actual_prompt_len = data["usage"]["prompt_tokens"]
                                actual_output_len = data["usage"]["completion_tokens"]
                                continue
                            delta = data["choices"][0]["delta"]

                            if delta.get("content", None):
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft.append(ttft)

                                # Decoding phase
                                else:
                                    output.itl.append(timestamp - most_recent_timestamp)

                                generated_text += delta["content"]
                            most_recent_timestamp = timestamp

                    output.prompt_len.append(actual_prompt_len)  # truncate <s>
                    output.output_len.append(actual_output_len)
                    output.generated_text.append(generated_text)
                    output.success = True
                    output.latency.append(latency)

                    # Prepare for the new request
                    request_func_input.prompts[prompt_idx] = (
                        prompt,
                        input_len,
                        actual_output_len,  # changes from max_tokens to output_len
                    )
                    prompt_idx += 1
                    messages.append(
                        {
                            "role": "assistant",
                            "content": generated_text,
                        }
                    )

                    # Move the new request to the end of the queue
                    if prompt_idx < len(request_func_input.prompts):
                        request_func_input.finished_prompts = prompt_idx
                        request_func_input.prev_messages = messages
                        await queue.put(request_func_input)
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    if pbar:
        pbar.update(1)
    return output


async def async_request_profile(api_url: str) -> RequestFuncOutput:
    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        output = RequestFuncOutput()
        try:
            async with session.post(url=api_url) as response:
                if response.status == 200:
                    output.success = True
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    return output


ASYNC_REQUEST_FUNCS = {
    "sglang": async_request_openai_completions,
    "vllm": async_request_openai_completions,
    "lmdeploy": async_request_openai_completions,
}


@dataclass
class BenchmarkMetrics:
    completed: int
    total_input: int
    total_output: int
    total_output_retokenized: int
    request_throughput: float
    input_throughput: float
    output_throughput: float
    output_throughput_retokenized: float
    total_throughput: float
    total_throughput_retokenized: float
    mean_ttft_ms: float
    median_ttft_ms: float
    std_ttft_ms: float
    p90_ttft_ms: float
    p99_ttft_ms: float
    mean_tpot_ms: float
    median_tpot_ms: float
    std_tpot_ms: float
    p90_tpot_ms: float
    p99_tpot_ms: float
    mean_itl_ms: float
    median_itl_ms: float
    std_itl_ms: float
    p90_itl_ms: float
    p99_itl_ms: float
    mean_e2e_latency_ms: float
    median_e2e_latency_ms: float
    std_e2e_latency_ms: float
    p99_e2e_latency_ms: float
    concurrency: float


async def get_requests(
    input_requests_queue: asyncio.Queue,
    request_rate: float,
    num_actual_requests: int,
) -> AsyncGenerator[RequestFuncInput, None]:
    for _ in range(num_actual_requests):
        try:
            request = await asyncio.wait_for(
                input_requests_queue.get(), timeout=300
            )  # Wait for 5 minites then abort
        except Exception as e:
            print(f"exception: {e}")
            break

        yield request

        if request_rate == float("inf"):
            continue

        interval = np.random.exponential(1.0 / request_rate)
        await asyncio.sleep(interval)


def calculate_metrics(
    outputs: List[RequestFuncOutput],
    dur_s: float,
    tokenizer: PreTrainedTokenizerBase,
    backend: str,
) -> Tuple[BenchmarkMetrics, List[int]]:
    output_lens: List[int] = []
    retokenized_output_lens: List[int] = []
    total_input = 0
    completed = 0
    itls: List[float] = []
    tpots: List[float] = []
    ttfts: List[float] = []
    e2e_latencies: List[float] = []
    output_success = 0
    for i in range(len(outputs)):
        if outputs[i].success:
            output_success += 1
            assert len(outputs[i].generated_text) == len(outputs[i].latency)
            assert len(outputs[i].generated_text) == len(outputs[i].ttft)
            for j in range(len(outputs[i].generated_text)):
                output_len = outputs[i].output_len[j]
                output_lens.append(output_len)
                retokenized_output_len = len(
                    tokenizer.encode(
                        outputs[i].generated_text[j], add_special_tokens=False
                    )
                )
                retokenized_output_lens.append(retokenized_output_len)
                total_input += outputs[i].prompt_len[j]
                if output_len > 1:
                    tpots.append(
                        (outputs[i].latency[j] - outputs[i].ttft[j]) / (output_len - 1)
                    )

                completed += 1
            itls += outputs[i].itl
            ttfts += outputs[i].ttft
            e2e_latencies += outputs[i].latency

        else:
            output_lens.append(0)
            retokenized_output_lens.append(0)

    if completed == 0:
        warnings.warn(
            "All requests failed. This is likely due to a misconfiguration "
            "on the benchmark arguments.",
            stacklevel=2,
        )
    metrics = BenchmarkMetrics(
        completed=completed,
        total_input=total_input,
        total_output=sum(output_lens),
        total_output_retokenized=sum(retokenized_output_lens),
        request_throughput=completed / dur_s,
        input_throughput=total_input / dur_s,
        output_throughput=sum(output_lens) / dur_s,
        output_throughput_retokenized=sum(retokenized_output_lens) / dur_s,
        total_throughput=(total_input + sum(output_lens)) / dur_s,
        total_throughput_retokenized=(total_input + sum(retokenized_output_lens))
        / dur_s,
        mean_ttft_ms=np.mean(ttfts or 0)
        * 1000,  # ttfts is empty if streaming is not supported by backend
        median_ttft_ms=np.median(ttfts or 0) * 1000,
        std_ttft_ms=np.std(ttfts or 0) * 1000,
        p90_ttft_ms=np.percentile(ttfts or 0, 90) * 1000,
        p99_ttft_ms=np.percentile(ttfts or 0, 99) * 1000,
        mean_tpot_ms=np.mean(tpots or 0) * 1000,
        median_tpot_ms=np.median(tpots or 0) * 1000,
        std_tpot_ms=np.std(tpots or 0) * 1000,
        p90_tpot_ms=np.percentile(tpots or 0, 90) * 1000,
        p99_tpot_ms=np.percentile(tpots or 0, 99) * 1000,
        mean_itl_ms=np.mean(itls or 0) * 1000,
        median_itl_ms=np.median(itls or 0) * 1000,
        std_itl_ms=np.std(itls or 0) * 1000,
        p90_itl_ms=np.percentile(itls or 0, 90) * 1000,
        p99_itl_ms=np.percentile(itls or 0, 99) * 1000,
        mean_e2e_latency_ms=np.mean(e2e_latencies) * 1000,
        median_e2e_latency_ms=np.median(e2e_latencies) * 1000,
        std_e2e_latency_ms=np.std(e2e_latencies) * 1000,
        p99_e2e_latency_ms=np.percentile(e2e_latencies, 99) * 1000,
        concurrency=np.sum(e2e_latencies) / dur_s,
    )

    return metrics, output_lens


async def benchmark(
    backend: str,
    api_url: str,
    base_url: str,
    model_id: str,
    tokenizer: PreTrainedTokenizerBase,
    input_requests: SampleOutput,
    request_rate: float,
    max_concurrency: Optional[int],
    disable_tqdm: bool,
    lora_name: str,
    extra_request_body: Dict[str, Any],
    profile: bool,
    enable_shared_prefix: bool,
):
    if backend in ASYNC_REQUEST_FUNCS:
        request_func = ASYNC_REQUEST_FUNCS[backend]
    else:
        raise ValueError(f"Unknown backend: {backend}")

    # Limit concurrency
    # From https://github.com/vllm-project/vllm/pull/9390
    semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else None

    async def limited_request_func(request_func_input, queue, tokenizer, pbar):
        if semaphore is None:
            return await request_func(
                request_func_input=request_func_input,
                queue=queue,
                tokenizer=tokenizer,
                pbar=pbar,
            )
        async with semaphore:
            return await request_func(
                request_func_input=request_func_input,
                queue=queue,
                tokenizer=tokenizer,
                pbar=pbar,
            )

    num_actual_requests = sum(len(r) for r in input_requests)
    print(f"Num of shared prefixes or conversations: {len(input_requests)}")
    print(f"Num of total requests: {num_actual_requests}")

    # flatten the requests for shared prefix
    if enable_shared_prefix:
        input_requests = [[r] for requests in input_requests for r in requests]
    inputs_requests_queue = asyncio.Queue(maxsize=len(input_requests))
    print("Starting initial single prompt test run...")
    # NOTE: Just use the first request of the first conversation for warmup
    test_input = RequestFuncInput(
        model=model_id,
        prompts=input_requests[0][:1],
        api_url=api_url,
        lora_name=lora_name,
        extra_request_body=extra_request_body,
    )
    test_output = await request_func(
        request_func_input=test_input, queue=inputs_requests_queue, tokenizer=tokenizer
    )
    if not test_output.success:
        raise ValueError(
            "Initial test run failed - Please make sure benchmark arguments "
            f"are correctly specified. Error: {test_output.error}"
        )
    else:
        print("Initial test run completed. Starting main benchmark run...")

    # Check the states
    assert inputs_requests_queue.empty()

    # Flush cache
    if "sglang" in backend:
        requests.post(base_url + "/flush_cache")

    time.sleep(1.0)

    # Start profiler
    if profile:
        print("Starting profiler...")
        profile_output = await async_request_profile(
            api_url=base_url + "/start_profile"
        )
        if profile_output.success:
            print("Profiler started")

    for request in input_requests:
        request_func_input = RequestFuncInput(
            model=model_id,
            prompts=request,
            api_url=api_url,
            lora_name=lora_name,
            extra_request_body=extra_request_body,
        )
        inputs_requests_queue.put_nowait(request_func_input)
    if (
        not args.enable_multiturn
        and not args.enable_shared_prefix
        and not args.dataset_name == "generated-shared-prefix"
    ):
        assert len(input_requests) == num_actual_requests

    pbar = None if disable_tqdm else tqdm(total=num_actual_requests)

    benchmark_start_time = time.perf_counter()
    tasks: List[asyncio.Task] = []
    async for request in get_requests(
        inputs_requests_queue, request_rate, num_actual_requests
    ):
        tasks.append(
            asyncio.create_task(
                limited_request_func(
                    request_func_input=request,
                    queue=inputs_requests_queue,
                    tokenizer=tokenizer,
                    pbar=pbar,
                )
            )
        )
    outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)

    # Stop profiler
    if profile:
        print("Stopping profiler...")
        profile_output = await async_request_profile(api_url=base_url + "/stop_profile")
        if profile_output.success:
            print("Profiler stopped")

    if pbar is not None:
        pbar.close()

    # Compute metrics and print results
    benchmark_duration = time.perf_counter() - benchmark_start_time
    metrics, output_lens = calculate_metrics(
        outputs=outputs,
        dur_s=benchmark_duration,
        tokenizer=tokenizer,
        backend=backend,
    )

    print("\n{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
    print("{:<40} {:<10}".format("Backend:", backend))
    print("{:<40} {:<10}".format("Traffic request rate:", request_rate))
    print(
        "{:<40} {:<10}".format(
            "Max reqeuest concurrency:",
            max_concurrency if max_concurrency else "not set",
        )
    )
    print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
    print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
    print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
    print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
    print(
        "{:<40} {:<10}".format(
            "Total generated tokens (retokenized):", metrics.total_output_retokenized
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Request throughput (req/s):", metrics.request_throughput
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Input token throughput (tok/s):", metrics.input_throughput
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Output token throughput (tok/s):", metrics.output_throughput
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Total token throughput (tok/s):", metrics.total_throughput
        )
    )
    print("{:<40} {:<10.2f}".format("Concurrency:", metrics.concurrency))
    print("{s:{c}^{n}}".format(s="End-to-End Latency", n=50, c="-"))
    print(
        "{:<40} {:<10.2f}".format("Mean E2E Latency (ms):", metrics.mean_e2e_latency_ms)
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Median E2E Latency (ms):", metrics.median_e2e_latency_ms
        )
    )
    print("{s:{c}^{n}}".format(s="Time to First Token", n=50, c="-"))
    print("{:<40} {:<10.2f}".format("Mean TTFT (ms):", metrics.mean_ttft_ms))
    print("{:<40} {:<10.2f}".format("Median TTFT (ms):", metrics.median_ttft_ms))
    print("{:<40} {:<10.2f}".format("P90 TTFT (ms):", metrics.p90_ttft_ms))
    print("{:<40} {:<10.2f}".format("P99 TTFT (ms):", metrics.p99_ttft_ms))
    print(
        "{s:{c}^{n}}".format(s="Time per Output Token (excl. 1st token)", n=50, c="-")
    )
    print("{:<40} {:<10.2f}".format("Mean TPOT (ms):", metrics.mean_tpot_ms))
    print("{:<40} {:<10.2f}".format("Median TPOT (ms):", metrics.median_tpot_ms))
    print("{:<40} {:<10.2f}".format("P90 TPOT (ms):", metrics.p90_tpot_ms))
    print("{:<40} {:<10.2f}".format("P99 TPOT (ms):", metrics.p99_tpot_ms))
    print("{s:{c}^{n}}".format(s="Inter-token Latency", n=50, c="-"))
    print("{:<40} {:<10.2f}".format("Mean ITL (ms):", metrics.mean_itl_ms))
    print("{:<40} {:<10.2f}".format("Median ITL (ms):", metrics.median_itl_ms))
    print("{:<40} {:<10.2f}".format("P90 ITL (ms):", metrics.p90_itl_ms))
    print("{:<40} {:<10.2f}".format("P99 ITL (ms):", metrics.p99_itl_ms))
    print("=" * 50)

    if (
        metrics.median_ttft_ms is not None
        and metrics.mean_itl_ms is not None
        and metrics.output_throughput is not None
    ):
        result = {
            # Arguments
            "backend": args.backend,
            "dataset_name": args.dataset_name,
            "request_rate": request_rate,
            "max_concurrency": max_concurrency,
            "fixed_output_len": args.fixed_output_len,
            "random_input_len": args.random_input_len,
            "random_output_len": args.random_output_len,
            "random_range_ratio": args.random_range_ratio,
            # Results
            "duration": benchmark_duration,
            "completed": metrics.completed,
            "total_input_tokens": metrics.total_input,
            "total_output_tokens": metrics.total_output,
            "total_output_tokens_retokenized": metrics.total_output_retokenized,
            "request_throughput": metrics.request_throughput,
            "input_throughput": metrics.input_throughput,
            "output_throughput": metrics.output_throughput,
            "mean_e2e_latency_ms": metrics.mean_e2e_latency_ms,
            "median_e2e_latency_ms": metrics.median_e2e_latency_ms,
            "std_e2e_latency_ms": metrics.std_e2e_latency_ms,
            "p99_e2e_latency_ms": metrics.p99_e2e_latency_ms,
            "mean_ttft_ms": metrics.mean_ttft_ms,
            "median_ttft_ms": metrics.median_ttft_ms,
            "std_ttft_ms": metrics.std_ttft_ms,
            "p99_ttft_ms": metrics.p99_ttft_ms,
            "mean_tpot_ms": metrics.mean_tpot_ms,
            "median_tpot_ms": metrics.median_tpot_ms,
            "std_tpot_ms": metrics.std_tpot_ms,
            "p99_tpot_ms": metrics.p99_tpot_ms,
            "mean_itl_ms": metrics.mean_itl_ms,
            "median_itl_ms": metrics.median_itl_ms,
            "std_itl_ms": metrics.std_itl_ms,
            "p99_itl_ms": metrics.p99_itl_ms,
            "concurrency": metrics.concurrency,
            "input_throughput": metrics.input_throughput,
            "output_throughput": metrics.output_throughput,
            "fixed_output_len": args.fixed_output_len,
            "random_input_len": args.random_input_len,
            "random_output_len": args.random_output_len,
            "random_range_ratio": args.random_range_ratio,
            "duration": benchmark_duration,
            "completed": metrics.completed,
        }
    else:
        print(f"Error running benchmark for request rate: {request_rate}")
        print("-" * 30)

    # Determine output file name
    if args.output_file:
        output_file_name = args.output_file
    else:
        now = datetime.now().strftime("%m%d")
        if args.dataset_name == "random":
            output_file_name = f"{args.backend}_{now}_{args.num_prompts}_{args.random_input_len}_{args.random_output_len}.jsonl"
        else:
            output_file_name = (
                f"{args.backend}_{now}_{args.num_prompts}_{args.dataset_name}.jsonl"
            )

    # Append results to a JSONL file
    with open(output_file_name, "a") as file:
        file.write(json.dumps(result) + "\n")

    result = {
        "duration": benchmark_duration,
        "completed": metrics.completed,
        "total_input_tokens": metrics.total_input,
        "total_output_tokens": metrics.total_output,
        "total_output_tokens_retokenized": metrics.total_output_retokenized,
        "request_throughput": metrics.request_throughput,
        "input_throughput": metrics.input_throughput,
        "output_throughput": metrics.output_throughput,
        "mean_ttft_ms": metrics.mean_ttft_ms,
        "median_ttft_ms": metrics.median_ttft_ms,
        "std_ttft_ms": metrics.std_ttft_ms,
        "p90_ttft_ms": metrics.p90_ttft_ms,
        "p99_ttft_ms": metrics.p99_ttft_ms,
        "mean_tpot_ms": metrics.mean_tpot_ms,
        "median_tpot_ms": metrics.median_tpot_ms,
        "std_tpot_ms": metrics.std_tpot_ms,
        "p90_tpot_ms": metrics.p90_tpot_ms,
        "p99_tpot_ms": metrics.p99_tpot_ms,
        "mean_itl_ms": metrics.mean_itl_ms,
        "median_itl_ms": metrics.median_itl_ms,
        "std_itl_ms": metrics.std_itl_ms,
        "p90_itl_ms": metrics.p90_itl_ms,
        "p99_itl_ms": metrics.p99_itl_ms,
        "input_lens": [output.prompt_len for output in outputs],
        "output_lens": output_lens,
        "ttfts": [output.ttft for output in outputs],
        "itls": [output.itl for output in outputs],
        "generated_texts": [output.generated_text for output in outputs],
        "errors": [output.error for output in outputs],
        "mean_e2e_latency_ms": metrics.mean_e2e_latency_ms,
        "median_e2e_latency_ms": metrics.median_e2e_latency_ms,
    }
    return result


def run_benchmark(args_: argparse.Namespace):
    global args
    args = args_

    # Set default value for max_concurrency if not present
    if not hasattr(args, "max_concurrency"):
        args.max_concurrency = None

    # Set global environments
    set_ulimit()
    random.seed(args.seed)
    np.random.seed(args.seed)

    extra_request_body = {}
    if args.extra_request_body:
        extra_request_body = json.loads(args.extra_request_body)

    # Set url
    if args.port is None:
        args.port = {
            "sglang": 30000,
            "lmdeploy": 23333,
            "vllm": 8000,
        }.get(args.backend, 30000)

    model_url = (
        f"{args.base_url}/v1/models"
        if args.base_url
        else f"http://{args.host}:{args.port}/v1/models"
    )

    if args.backend in ["sglang", "vllm", "lmdeploy"]:
        api_url = (
            f"{args.base_url}/v1/chat/completions"
            if args.base_url
            else f"http://{args.host}:{args.port}/v1/chat/completions"
        )
    base_url = (
        f"http://{args.host}:{args.port}" if args.base_url is None else args.base_url
    )

    # Get model name
    if args.model is None:
        if args.backend == "truss":
            print(
                "Please provide a model with `--model` when using truss backend. e.g. --model meta-llama/Llama-3.1-8B-Instruct"
            )
            sys.exit(1)
        try:
            response = requests.get(model_url)
            model_list = response.json().get("data", [])
            args.model = model_list[0]["id"] if model_list else None
        except Exception as e:
            print(f"Failed to fetch model from {model_url}. Error: {e}")
            print(
                "Please specify the correct host and port using `--host` and `--port`."
            )
            sys.exit(1)

    if args.model is None:
        print("No model specified or found. Please provide a model using `--model`.")
        sys.exit(1)

    # Dataset compatibility check
    if args.enable_multiturn:
        # TODO: Support multiturn for random
        if args.dataset_name not in ["sharegpt", "ultrachat", "loogle", "nextqa"]:
            print(
                "Multiturn conversation is only supported for sharegpt, ultrachat, loogle, and nextqa datasets."
            )
            sys.exit(1)

    if args.enable_shared_prefix:
        if args.dataset_name not in ["loogle", "nextqa"]:
            print("Shared prefix is only supported for loogle and nextqa datasets.")
            sys.exit(1)

    print(f"{args}\n")

    # Read dataset
    backend = args.backend
    model_id = args.model
    tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model

    tokenizer = get_tokenizer(tokenizer_id)

    input_requests = get_dataset(args, tokenizer)

    return asyncio.run(
        benchmark(
            backend=backend,
            api_url=api_url,
            base_url=base_url,
            model_id=model_id,
            tokenizer=tokenizer,
            input_requests=input_requests,
            request_rate=args.request_rate,
            max_concurrency=args.max_concurrency,
            disable_tqdm=args.disable_tqdm,
            lora_name=args.lora_name,
            extra_request_body=extra_request_body,
            profile=args.profile,
            enable_shared_prefix=args.enable_shared_prefix,
        )
    )


if __name__ == "__main__":
    parser = ArgumentParser(description="Benchmark the online serving throughput.")
    parser.add_argument(
        "--backend",
        type=str,
        choices=list(ASYNC_REQUEST_FUNCS.keys()),
        default="sglang",
        help="Must specify a backend, depending on the LLM Inference Engine.",
    )
    parser.add_argument(
        "--base-url",
        type=str,
        default=None,
        help="Server or API base url if not using http host and port.",
    )
    parser.add_argument(
        "--host", type=str, default="0.0.0.0", help="Default host is 0.0.0.0."
    )
    parser.add_argument(
        "--port",
        type=int,
        help="If not set, the default port is configured according to its default value for different LLM Inference Engines.",
    )
    parser.add_argument(
        "--dataset-name",
        type=str,
        default="sharegpt",
        choices=[
            "sharegpt",
            "random",
            "generated-shared-prefix",
            "ultrachat",
            "loogle",
            "nextqa",
        ],
        help="Name of the dataset to benchmark on.",
    )
    parser.add_argument(
        "--dataset-path", type=str, default="", help="Path to the dataset."
    )
    parser.add_argument(
        "--model",
        type=str,
        help="Name or path of the model. If not set, the default model will request /v1/models for conf.",
    )
    parser.add_argument(
        "--tokenizer",
        type=str,
        help="Name or path of the tokenizer. If not set, using the model conf.",
    )
    parser.add_argument(
        "--chat-template",
        type=str,
        help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
    )
    parser.add_argument(
        "--num-prompts",
        type=int,
        default=1000,
        help="Number of prompts to process. Default is 1000.",
    )
    parser.add_argument(
        "--fixed-output-len",
        type=int,
        default=None,
        help="Output length for each request. Overrides the output length from the dataset.",
    )
    parser.add_argument(
        "--sharegpt-context-len",
        type=int,
        default=None,
        help="The context length of the model for the ShareGPT dataset. Requests longer than the context length will be dropped.",
    )
    parser.add_argument(
        "--random-input-len",
        type=int,
        default=1024,
        help="Number of input tokens per request, used only for random dataset.",
    )
    parser.add_argument(
        "--random-output-len",
        default=1024,
        type=int,
        help="Number of output tokens per request, used only for random dataset.",
    )
    parser.add_argument(
        "--random-range-ratio",
        type=float,
        default=0.0,
        help="Range of sampled ratio of input/output length, "
        "used only for random dataset.",
    )
    parser.add_argument(
        "--request-rate",
        type=float,
        default=float("inf"),
        help="Number of requests per second. If this is inf, then all the requests are sent at time 0. "
        "Otherwise, we use Poisson process to synthesize the request arrival times. Default is inf.",
    )
    parser.add_argument(
        "--max-concurrency",
        type=int,
        default=None,
        help="Maximum number of concurrent requests. This can be used "
        "to help simulate an environment where a higher level component "
        "is enforcing a maximum number of concurrent requests. While the "
        "--request-rate argument controls the rate at which requests are "
        "initiated, this argument will control how many are actually allowed "
        "to execute at a time. This means that when used in combination, the "
        "actual request rate may be lower than specified with --request-rate, "
        "if the server is not processing requests fast enough to keep up.",
    )
    parser.add_argument(
        "--multi",
        action="store_true",
        help="Use request rate range rather than single value.",
    )
    parser.add_argument(
        "--request-rate-range",
        type=str,
        default="2,34,2",
        help="Range of request rates in the format start,stop,step. Default is 2,34,2. It also supports a list of request rates, requiring the parameters to not equal three.",
    )
    parser.add_argument("--output-file", type=str, help="Output JSONL file name.")
    parser.add_argument(
        "--enable-multiturn",
        action="store_true",
        help="Enable multiturn chat for online serving benchmarking. "
        "This option is effective on the following datasets: "
        "sharegpt, ultrachat, loogle, nextqa",
    )
    parser.add_argument(
        "--enable-shared-prefix",
        action="store_true",
        help="Enable shared prefix for online serving benchmarking. "
        "This option is effective on the following datasets: "
        "loogle, nextqa",
    )

    parser.add_argument(
        "--disable-shuffle",
        action="store_true",
        help="Disable shuffling datasets. This is useful to generate stable output "
        "in benchmarking",
    )
    parser.add_argument(
        "--disable-tqdm",
        action="store_true",
        help="Specify to disable tqdm progress bar.",
    )
    parser.add_argument(
        "--disable-stream",
        action="store_true",
        help="Disable streaming mode.",
    )
    parser.add_argument(
        "--return-logprob",
        action="store_true",
        help="Return logprob.",
    )
    parser.add_argument("--seed", type=int, default=1, help="The random seed.")
    parser.add_argument(
        "--disable-ignore-eos",
        action="store_true",
        help="Disable ignoring EOS.",
    )
    parser.add_argument(
        "--extra-request-body",
        metavar='{"key1": "value1", "key2": "value2"}',
        type=str,
        help="Append given JSON object to the request payload. You can use this to specify"
        "additional generate params like sampling params.",
    )
    parser.add_argument(
        "--apply-chat-template",
        action="store_true",
        help="Apply chat template",
    )
    parser.add_argument(
        "--profile",
        action="store_true",
        help="Use Torch Profiler. The endpoint must be launched with "
        "SGLANG_TORCH_PROFILER_DIR to enable profiler.",
    )
    parser.add_argument(
        "--lora-name",
        type=str,
        default=None,
        help="The name of LoRA adapter",
    )

    group = parser.add_argument_group("generated-shared-prefix dataset arguments")
    group.add_argument(
        "--gsp-num-groups",
        type=int,
        default=64,
        help="Number of system prompt groups for generated-shared-prefix dataset",
    )
    group.add_argument(
        "--gsp-prompts-per-group",
        type=int,
        default=16,
        help="Number of prompts per system prompt group for generated-shared-prefix dataset",
    )
    group.add_argument(
        "--gsp-system-prompt-len",
        type=int,
        default=2048,
        help="Target length in tokens for system prompts in generated-shared-prefix dataset",
    )
    group.add_argument(
        "--gsp-question-len",
        type=int,
        default=128,
        help="Target length in tokens for questions in generated-shared-prefix dataset",
    )
    group.add_argument(
        "--gsp-output-len",
        type=int,
        default=256,
        help="Target length in tokens for outputs in generated-shared-prefix dataset",
    )
    # videos specific
    parser.add_argument(
        "--max-frames",
        type=int,
        default=sys.maxsize,
        help="The maximum number of frames to extract from each video. "
        "This option is specific to the nextqa dataset (video benchmark). ",
    )
    args = parser.parse_args()

    if args.enable_multiturn and args.enable_shared_prefix:
        parser.error(
            "--enable-multiturn and --enable-shared-prefix cannot be set at the same time."
        )

    run_benchmark(args)