ci_analyzer.py 22.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#!/usr/bin/env python3
"""
SGLang CI Analyzer
Simple tool to analyze CI failures for SGLang project
"""

import argparse
import json
import os
import sys
import time
from collections import Counter, defaultdict
from datetime import datetime
from typing import Dict, List

import requests


class SGLangCIAnalyzer:
    """SGLang CI Analyzer"""

    def __init__(self, token: str):
        self.token = token
        self.base_url = "https://api.github.com"
        self.repo = "sgl-project/sglang"
        self.headers = {
            "Authorization": f"token {token}",
            "Accept": "application/vnd.github.v3+json",
            "User-Agent": "SGLang-CI-Analyzer/1.0",
        }
        self.session = requests.Session()
        self.session.headers.update(self.headers)

34
    def get_recent_runs(self, limit: int = 100, branch: str = None) -> List[Dict]:
35
        """Get recent CI run data"""
36
37
        branch_info = f" from branch '{branch}'" if branch else ""
        print(f"Fetching {limit} recent CI runs{branch_info}...")
38
39
40
41
42
43
44
45

        all_runs = []
        page = 1
        per_page = 100

        while len(all_runs) < limit:
            url = f"{self.base_url}/repos/{self.repo}/actions/runs"
            params = {"per_page": min(per_page, limit - len(all_runs)), "page": page}
46
47
            if branch:
                params["branch"] = branch
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

            try:
                response = self.session.get(url, params=params)
                response.raise_for_status()
                data = response.json()

                if not data.get("workflow_runs"):
                    break

                all_runs.extend(data["workflow_runs"])
                print(f"Fetched {len(all_runs)} runs so far...")

                if len(data["workflow_runs"]) < per_page:
                    break

                page += 1
                time.sleep(0.1)  # Avoid API rate limits

            except requests.exceptions.RequestException as e:
                print(f"Error fetching CI data: {e}")
                break

        return all_runs[:limit]

    def analyze_ci_failures(self, runs: List[Dict]) -> Dict:
73
74
        """Analyze CI failure patterns (CUDA jobs only)"""
        print("Analyzing CI failure data (CUDA only)...")
75

76
        # SGLang specific job categories (CUDA only)
77
        job_categories = {
78
79
            "build": [
                "build-test",
80
81
82
83
84
85
86
87
88
89
90
91
                "sgl-kernel-build-wheels",
            ],
            "unit-test": [
                "unit-test-frontend",
                "unit-test-backend-1-gpu",
                "unit-test-backend-2-gpu",
                "unit-test-backend-4-gpu",
                "unit-test-backend-8-gpu",
            ],
            "performance": [
                "performance-test-1-gpu-part-1",
                "performance-test-1-gpu-part-2",
92
                "performance-test-1-gpu-part-3",
93
94
                "performance-test-2-gpu",
            ],
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
            "accuracy": [
                "accuracy-test-1-gpu",
                "accuracy-test-2-gpu",
            ],
            "mla-test": [
                "sgl-kernel-mla-test",
            ],
            "deepep": [
                "unit-test-deepep-4-gpu",
                "unit-test-deepep-8-gpu",
            ],
            "per-commit": [
                "per-commit-8-gpu-h20",
            ],
            "nightly": [
                "nightly-test-perf-text-models",
                "nightly-test-eval-text-models",
            ],
            "integration": [
                "run-all-notebooks",
                "vllm-dependency-test",
                "test-disaggregation",
            ],
            "b200": [
                "unit-test-backend-4-gpu-b200",
            ],
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        }

        stats = {
            "total_runs": len(runs),
            "failed_runs": 0,
            "successful_runs": 0,
            "cancelled_runs": 0,
            "skipped_runs": 0,
            "category_failures": defaultdict(int),
            "job_failures": defaultdict(int),
            "failure_patterns": defaultdict(int),
            "job_failure_links": defaultdict(
                list
            ),  # Store recent failure links for each job
            "job_last_success": {},  # Store last successful run for each job
        }

        total_runs = len(runs)
        for i, run in enumerate(runs, 1):
            # Show progress every 10% or every 50 runs, whichever is smaller
            if i % max(1, min(50, total_runs // 10)) == 0 or i == total_runs:
                progress = (i / total_runs) * 100
                print(f"Progress: {i}/{total_runs} ({progress:.1f}%)")

            run_status = run.get("conclusion", "unknown")
            workflow_name = run.get("name", "Unknown")
            run_id = run.get("id")
            run_number = run.get("run_number")
            created_at = run.get("created_at")

            # Count run status
            if run_status == "failure":
                stats["failed_runs"] += 1
            elif run_status == "success":
                stats["successful_runs"] += 1
            elif run_status == "cancelled":
                stats["cancelled_runs"] += 1
            elif run_status == "skipped":
                stats["skipped_runs"] += 1

            # Get detailed job information for all runs
            jobs = self._get_job_details(run_id)
            run_url = f"https://github.com/{self.repo}/actions/runs/{run_id}"
            pr_info = self._get_pr_info(run)

            for job in jobs:
                job_name = job.get("name", "Unknown")
                job_conclusion = job.get("conclusion", "unknown")

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
                # Filter out non-specific CI jobs and non-CUDA jobs
                # Skip meta jobs and AMD/NPU related jobs
                if (
                    job_name
                    not in [
                        "check-changes",
                        "pr-test-finish",
                        "pr-test-h20-finish",
                        "pr-test-amd-finish",
                        "pr-test-b200-finish",
                        "lint",
                        "Set up job",
                    ]
                    and "-amd" not in job_name.lower()
                    and "mi300" not in job_name.lower()
                    and "mi325" not in job_name.lower()
                    and "gfx" not in job_name.lower()
                    and "-npu" not in job_name.lower()
                    and "ascend" not in job_name.lower()
                ):
190
191
192
193
194
195
196
197
198
199
                    # Record successful jobs (update last success)
                    if job_conclusion == "success":
                        stats["job_last_success"][job_name] = {
                            "url": run_url,
                            "run_number": run_number,
                            "created_at": created_at,
                            "pr_info": pr_info,
                        }

                    # Record failed jobs
200
                    elif job_conclusion == "failure":
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
                        stats["job_failures"][job_name] += 1

                        # Store failure link (keep only last 3 for each job)
                        if len(stats["job_failure_links"][job_name]) < 3:
                            stats["job_failure_links"][job_name].append(
                                {
                                    "url": run_url,
                                    "run_number": run_number,
                                    "created_at": created_at,
                                    "pr_info": pr_info,
                                }
                            )

                        # Categorize failed jobs
                        for category, jobs_list in job_categories.items():
                            if any(
                                job_pattern in job_name for job_pattern in jobs_list
                            ):
                                stats["category_failures"][category] += 1
                                break

                        # Analyze failure patterns
                        self._analyze_failure_pattern(job, stats)

            time.sleep(0.1)  # Avoid API rate limits

        return stats

    def _get_job_details(self, run_id: int) -> List[Dict]:
        """Get job details for a specific run"""
        url = f"{self.base_url}/repos/{self.repo}/actions/runs/{run_id}/jobs"
        try:
            response = self.session.get(url)
            response.raise_for_status()
            return response.json().get("jobs", [])
        except:
            return []

    def _get_pr_info(self, run: Dict) -> Dict:
        """Get PR information from a run"""
        pr_info = {
            "pr_number": None,
            "author": run.get("head_commit", {})
            .get("author", {})
            .get("name", "Unknown"),
            "head_sha": run.get("head_sha", ""),
            "head_branch": run.get("head_branch", ""),
        }

        # Try to extract PR number from pull_requests
        pull_requests = run.get("pull_requests", [])
        if pull_requests:
            pr_info["pr_number"] = pull_requests[0].get("number")

        return pr_info

    def _analyze_failure_pattern(self, job: Dict, stats: Dict):
258
        """Analyze failure patterns (CUDA jobs only)"""
259
260
261
262
263
264
265
        job_name = job.get("name", "")
        steps = job.get("steps", [])

        for step in steps:
            if step.get("conclusion") == "failure":
                step_name = step.get("name", "")

266
                # SGLang specific failure pattern recognition (CUDA only)
267
268
                if "timeout" in step_name.lower():
                    stats["failure_patterns"]["Timeout"] += 1
269
270
271
272
273
                elif "build" in step_name.lower() or "build" in job_name.lower():
                    stats["failure_patterns"]["Build Failure"] += 1
                elif "install" in step_name.lower() or "dependency" in job_name.lower():
                    stats["failure_patterns"]["Dependency Installation Failure"] += 1
                elif "unit" in job_name.lower() or "unit-test" in job_name.lower():
274
                    stats["failure_patterns"]["Unit Test Failure"] += 1
275
                elif "performance" in job_name.lower() or "perf" in job_name.lower():
276
277
278
                    stats["failure_patterns"]["Performance Test Failure"] += 1
                elif "accuracy" in job_name.lower():
                    stats["failure_patterns"]["Accuracy Test Failure"] += 1
279
280
281
282
283
284
285
286
287
288
289
290
291
292
                elif "mla" in job_name.lower():
                    stats["failure_patterns"]["MLA Test Failure"] += 1
                elif "deepep" in job_name.lower():
                    stats["failure_patterns"]["DeepEP Test Failure"] += 1
                elif "nightly" in job_name.lower():
                    stats["failure_patterns"]["Nightly Test Failure"] += 1
                elif "notebook" in job_name.lower():
                    stats["failure_patterns"]["Notebook Test Failure"] += 1
                elif "disaggregation" in job_name.lower():
                    stats["failure_patterns"]["Disaggregation Test Failure"] += 1
                elif "h20" in job_name.lower() or "h200" in job_name.lower():
                    stats["failure_patterns"]["H20/H200 GPU Failure"] += 1
                elif "b200" in job_name.lower():
                    stats["failure_patterns"]["B200 GPU Failure"] += 1
293
294
295
296
297
298
299
300
                elif "gpu" in job_name.lower():
                    stats["failure_patterns"]["GPU Related Failure"] += 1
                else:
                    stats["failure_patterns"]["Other"] += 1

    def generate_report(self, stats: Dict):
        """Generate CI analysis report"""
        print("\n" + "=" * 60)
301
        print("SGLang CI Analysis Report (CUDA Only)")
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
        print("=" * 60)

        # Overall statistics
        total = stats["total_runs"]
        failed = stats["failed_runs"]
        success = stats["successful_runs"]
        cancelled = stats["cancelled_runs"]
        skipped = stats["skipped_runs"]
        success_rate = (success / total * 100) if total > 0 else 0

        print(f"\nOverall Statistics:")
        print(f"  Total runs: {total}")
        print(f"  Successful: {success}")
        print(f"  Failed: {failed}")
        print(f"  Cancelled: {cancelled}")
        print(f"  Skipped: {skipped}")
        print(f"  Success rate: {success_rate:.1f}%")

        # Category failure statistics
        if stats["category_failures"]:
            print(f"\nCategory Failure Statistics:")
            for category, count in sorted(
                stats["category_failures"].items(), key=lambda x: x[1], reverse=True
            ):
                print(f"  {category}: {count} failures")

        # Most frequently failed jobs with links
        if stats["job_failures"]:
            print(f"\nMost Frequently Failed Jobs (Top 50):")
            for i, (job, count) in enumerate(
                sorted(stats["job_failures"].items(), key=lambda x: x[1], reverse=True)[
                    :50
                ],
                1,
            ):
                print(f"  {i:2d}. {job}: {count} times")

                # Show last successful run
                if job in stats["job_last_success"]:
                    last_success = stats["job_last_success"][job]
                    success_date = datetime.fromisoformat(
                        last_success["created_at"].replace("Z", "+00:00")
                    )
                    pr_info = last_success["pr_info"]

                    pr_text = ""
                    if pr_info["pr_number"]:
                        pr_text = (
                            f" (PR #{pr_info['pr_number']} by {pr_info['author']})"
                        )
                    else:
                        pr_text = f" by {pr_info['author']}"

                    print(
                        f"      Last Success: Run #{last_success['run_number']} ({success_date.strftime('%Y-%m-%d %H:%M')}){pr_text}: {last_success['url']}"
                    )

                # Show recent failure links
                if (
                    job in stats["job_failure_links"]
                    and stats["job_failure_links"][job]
                ):
                    print("      Recent Failures:")
                    for link_info in stats["job_failure_links"][job]:
                        created_at = datetime.fromisoformat(
                            link_info["created_at"].replace("Z", "+00:00")
                        )

                        # Format PR info for failures
                        pr_info = link_info.get("pr_info", {})
                        pr_text = ""
                        if pr_info.get("pr_number"):
                            pr_text = f" (PR #{pr_info['pr_number']} by {pr_info.get('author', 'Unknown')})"
                        else:
                            pr_text = f" by {pr_info.get('author', 'Unknown')}"

                        print(
                            f"        - Run #{link_info['run_number']} ({created_at.strftime('%Y-%m-%d %H:%M')}){pr_text}: {link_info['url']}"
                        )

        # Failure pattern analysis
        if stats["failure_patterns"]:
            print(f"\nFailure Pattern Analysis:")
            for pattern, count in sorted(
                stats["failure_patterns"].items(), key=lambda x: x[1], reverse=True
            ):
                print(f"  {pattern}: {count} times")

        print("\n" + "=" * 60)

    def save_detailed_report(self, stats: Dict, output_file: str = "ci_analysis.json"):
        """Save detailed report to file"""
        with open(output_file, "w", encoding="utf-8") as f:
            json.dump(stats, f, ensure_ascii=False, indent=2)
        print(f"\nDetailed report saved to: {output_file}")

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
    def generate_github_summary(self, stats: Dict):
        """Generate GitHub Actions summary"""
        try:
            github_step_summary = os.environ.get("GITHUB_STEP_SUMMARY")
            if not github_step_summary:
                print("ℹ️  Not running in GitHub Actions, skipping summary generation")
                return

            print("📊 Generating GitHub Actions summary for CI Analysis...")

            summary_lines = []
            summary_lines.append("# 🔍 SGLang CI Analysis Report (CUDA Only)")
            summary_lines.append("")

            # Overall statistics
            total = stats["total_runs"]
            failed = stats["failed_runs"]
            success = stats["successful_runs"]
            cancelled = stats["cancelled_runs"]
            skipped = stats["skipped_runs"]
            success_rate = (success / total * 100) if total > 0 else 0

            summary_lines.append("## 📊 Overall Statistics")
            summary_lines.append("")
            summary_lines.append("| Metric | Count | Percentage |")
            summary_lines.append("|--------|-------|------------|")
            summary_lines.append(f"| Total Runs | {total} | 100% |")
            summary_lines.append(
                f"| ✅ Successful | {success} | {success/total*100:.1f}% |"
            )
            summary_lines.append(f"| ❌ Failed | {failed} | {failed/total*100:.1f}% |")
            summary_lines.append(
                f"| 🚫 Cancelled | {cancelled} | {cancelled/total*100:.1f}% |"
            )
            summary_lines.append(
                f"| ⏭️ Skipped | {skipped} | {skipped/total*100:.1f}% |"
            )
            summary_lines.append(f"| **Success Rate** | **{success_rate:.1f}%** | - |")
            summary_lines.append("")

            # Category failure statistics
            if stats["category_failures"]:
                summary_lines.append("## 📁 Category Failure Statistics")
                summary_lines.append("")
                summary_lines.append("| Category | Failures |")
                summary_lines.append("|----------|----------|")
                for category, count in sorted(
                    stats["category_failures"].items(), key=lambda x: x[1], reverse=True
                ):
                    summary_lines.append(f"| {category} | {count} |")
                summary_lines.append("")

            # Most frequently failed jobs (Top 20)
            if stats["job_failures"]:
                summary_lines.append("## 🔴 Most Frequently Failed Jobs (Top 20)")
                summary_lines.append("")

                top_failures = sorted(
                    stats["job_failures"].items(), key=lambda x: x[1], reverse=True
                )[:20]

                for i, (job, count) in enumerate(top_failures, 1):
                    summary_lines.append(f"### {i}. `{job}` ({count} failures)")
                    summary_lines.append("")

                    # Show last successful run
                    if job in stats["job_last_success"]:
                        last_success = stats["job_last_success"][job]
                        success_date = datetime.fromisoformat(
                            last_success["created_at"].replace("Z", "+00:00")
                        )
                        pr_info = last_success["pr_info"]

                        pr_text = ""
                        if pr_info["pr_number"]:
                            pr_text = (
                                f" (PR #{pr_info['pr_number']} by {pr_info['author']})"
                            )
                        else:
                            pr_text = f" by {pr_info['author']}"

                        summary_lines.append(
                            f"✅ **Last Success:** [Run #{last_success['run_number']}]({last_success['url']}) ({success_date.strftime('%Y-%m-%d %H:%M')}){pr_text}"
                        )
                        summary_lines.append("")

                    # Show recent failure links
                    if (
                        job in stats["job_failure_links"]
                        and stats["job_failure_links"][job]
                    ):
                        summary_lines.append("❌ **Recent Failures:**")
                        for link_info in stats["job_failure_links"][job]:
                            created_at = datetime.fromisoformat(
                                link_info["created_at"].replace("Z", "+00:00")
                            )

                            pr_info = link_info.get("pr_info", {})
                            pr_text = ""
                            if pr_info.get("pr_number"):
                                pr_text = f" (PR #{pr_info['pr_number']} by {pr_info.get('author', 'Unknown')})"
                            else:
                                pr_text = f" by {pr_info.get('author', 'Unknown')}"

                            summary_lines.append(
                                f"- [Run #{link_info['run_number']}]({link_info['url']}) ({created_at.strftime('%Y-%m-%d %H:%M')}){pr_text}"
                            )
                        summary_lines.append("")

            # Failure pattern analysis
            if stats["failure_patterns"]:
                summary_lines.append("## 🔬 Failure Pattern Analysis")
                summary_lines.append("")
                summary_lines.append("| Pattern | Count |")
                summary_lines.append("|---------|-------|")
                for pattern, count in sorted(
                    stats["failure_patterns"].items(), key=lambda x: x[1], reverse=True
                ):
                    summary_lines.append(f"| {pattern} | {count} |")
                summary_lines.append("")

            # Write summary to GitHub Actions
            with open(github_step_summary, "w", encoding="utf-8") as f:
                f.write("\n".join(summary_lines))
                f.write("\n\n---\n\n")  # Add separator between reports

            print("✅ GitHub Actions summary generated successfully")

        except Exception as e:
            print(f"❌ Failed to generate GitHub Actions summary: {e}")

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543

def main():
    parser = argparse.ArgumentParser(description="SGLang CI Analyzer")
    parser.add_argument("--token", required=True, help="GitHub Personal Access Token")
    parser.add_argument(
        "--limit",
        type=int,
        default=100,
        help="Number of runs to analyze (default: 100)",
    )
    parser.add_argument(
        "--output",
        default="ci_analysis.json",
        help="Output file (default: ci_analysis.json)",
    )
544
545
546
547
548
    parser.add_argument(
        "--branch",
        default="main",
        help="Filter runs by branch (default: 'main'). Set to empty string '' to analyze all branches.",
    )
549
550
551
552
553
554
555
556

    args = parser.parse_args()

    # Create analyzer
    analyzer = SGLangCIAnalyzer(args.token)

    try:
        # Get CI run data
557
558
559
        # Use None for branch if empty string is provided (to scan all branches)
        branch = args.branch if args.branch else None
        runs = analyzer.get_recent_runs(args.limit, branch)
560
561
562
563
564
565
566
567
568
569
570
571
572
573

        if not runs:
            print("No CI run data found")
            return

        # Analyze failures
        stats = analyzer.analyze_ci_failures(runs)

        # Generate report
        analyzer.generate_report(stats)

        # Save detailed report
        analyzer.save_detailed_report(stats, args.output)

574
575
576
        # Generate GitHub summary
        analyzer.generate_github_summary(stats)

577
578
579
580
581
582
583
    except Exception as e:
        print(f"Error during analysis: {e}")
        sys.exit(1)


if __name__ == "__main__":
    main()