test_flashmla.py 18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
import math
import random
from typing import Optional, Tuple

import pytest
import torch
import triton
from sgl_kernel.flash_mla import (
    flash_mla_sparse_fwd,
    flash_mla_with_kvcache,
    get_mla_metadata,
)

skip_condition = torch.cuda.get_device_capability() < (10, 0)

# ================ prefill usage ================ #
S_Q_PREFILL = [1, 62]
KV_TOPK_PREFILL = [
    # Regular shapes
    (128, 128),
    (256, 256),
    (512, 512),
    # Irregular shapes
    (592, 128),
    (1840, 256),
    (1592, 384),
    (1521, 512),
    # Irregular shapes with OOB TopK
    (95, 128),
    (153, 256),
    (114, 384),
]

# ================= decode usage ================= #
B_DECODE = [1, 2, 6, 64]
S_Q_DECODE = [1, 2, 4]
S_K_DECODE = [20, 140, 4096]
IS_VARLEN = [False, True]
CAUSAL_TOPK = [(True, None), (False, None), (False, 128), (False, 2048)]
DTYPE = [torch.float16, torch.bfloat16]


def quantize_k_cache(
    input_k_cache: torch.Tensor,  # (num_blocks, block_size, h_k, d)
    dv: int,
    tile_size: int = 128,
) -> torch.Tensor:
    """
    Quantize the k-cache
    Return a tensor with shape (num_blocks, block_size, h_k, dv + 4(dv/tile_size) + t(d-dv)) of dtype uint8_t, where t = input_k_cache.element_size()
    For more detail about the layout of K/V, please refer to comments in flash_mla_interface.py or README.md
    """
    assert dv % tile_size == 0
    num_tiles = dv // tile_size
    num_blocks, block_size, h_k, d = input_k_cache.shape
    assert h_k == 1
    input_k_cache = input_k_cache.squeeze(2)  # [num_blocks, block_size, d]
    input_elem_size = input_k_cache.element_size()

    result = torch.empty(
        (num_blocks, block_size, dv + num_tiles * 4 + input_elem_size * (d - dv)),
        dtype=torch.float8_e4m3fn,
        device=input_k_cache.device,
    )
    result_k_nope_part = result[..., :dv]
    result_k_scale_factor = result[..., dv : dv + num_tiles * 4].view(torch.float32)
    result_k_rope_part = result[..., dv + num_tiles * 4 :].view(input_k_cache.dtype)
    result_k_rope_part[:] = input_k_cache[..., dv:]

    for tile_idx in range(0, num_tiles):
        cur_scale_factors_inv = (
            torch.abs(
                input_k_cache[..., tile_idx * tile_size : (tile_idx + 1) * tile_size]
            )
            .max(dim=-1)
            .values
            / 448.0
        )  # [num_blocks, block_size]
        result_k_scale_factor[:, :, tile_idx] = cur_scale_factors_inv

        cur_scale_factors_inv.unsqueeze_(-1)  # [num_blocks, block_size, 1]
        cur_quantized_nope = (
            input_k_cache[
                ..., tile_idx * tile_size : (tile_idx + 1) * tile_size
            ].float()
            / cur_scale_factors_inv.float()
        ).to(torch.float8_e4m3fn)
        result_k_nope_part[..., tile_idx * tile_size : (tile_idx + 1) * tile_size] = (
            cur_quantized_nope
        )

    result = result.view(num_blocks, block_size, 1, -1)
    return result


def dequantize_k_cache(
    quant_k_cache: torch.Tensor,  # (num_blocks, block_size, 1, bytes_per_token)
    dv: int = 512,
    tile_size: int = 128,
    d: int = 576,
) -> torch.Tensor:
    """
    De-quantize the k-cache
    """
    assert dv % tile_size == 0
    num_tiles = dv // tile_size
    num_blocks, block_size, h_k, _ = quant_k_cache.shape
    assert h_k == 1
    result = torch.empty(
        (num_blocks, block_size, d), dtype=torch.bfloat16, device=quant_k_cache.device
    )

    quant_k_cache = quant_k_cache.view(num_blocks, block_size, -1)

    input_nope = quant_k_cache[..., :dv]
    input_scale = quant_k_cache[..., dv : dv + num_tiles * 4].view(torch.float32)
    input_rope = quant_k_cache[..., dv + num_tiles * 4 :].view(torch.bfloat16)
    result[..., dv:] = input_rope

    for tile_idx in range(0, num_tiles):
        cur_nope = input_nope[
            ..., tile_idx * tile_size : (tile_idx + 1) * tile_size
        ].to(torch.float32)
        cur_scales = input_scale[..., tile_idx].unsqueeze(-1)
        result[..., tile_idx * tile_size : (tile_idx + 1) * tile_size] = (
            cur_nope * cur_scales
        )

    result = result.view(num_blocks, block_size, 1, d)
    return result


def cdiv(x: int, y: int):
    return (x + y - 1) // y


def get_window_size(causal, window):
    if window > 0:
        window_size = (window - 1, 0) if causal else (window - 1, window - 1)
    else:
        window_size = (-1, -1)
    return window_size


def get_attn_bias(s_q, s_k, causal, window):
    attn_bias = torch.zeros(s_q, s_k, dtype=torch.float32, device="cuda")
    if causal:
        temp_mask = torch.ones(s_q, s_k, dtype=torch.bool, device="cuda").tril(
            diagonal=s_k - s_q
        )
        attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
    if window > 0:
        temp_mask = torch.ones(s_q, s_k, dtype=torch.bool, device="cuda").tril(
            diagonal=s_k - s_q - window
        )
        attn_bias.masked_fill_(temp_mask, float("-inf"))
        temp_mask = torch.ones(s_q, s_k, dtype=torch.bool, device="cuda").tril(
            diagonal=s_k - s_q + window - 1
        )
        attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
    return attn_bias


def sdpa(query, key, value, attn_bias, softmax_scale=None):
    query = query.float().transpose(-3, -2)
    key = key.float().transpose(-3, -2)
    value = value.float().transpose(-3, -2)
    key = key.repeat_interleave(h // h_k, dim=-3)
    value = value.repeat_interleave(h // h_k, dim=-3)
    if softmax_scale is None:
        softmax_scale = query.shape[-1] ** (-0.5)
    attn_weight = (query @ key.transpose(-2, -1)) * softmax_scale
    attn_weight += attn_bias
    lse = attn_weight.logsumexp(dim=-1)
    attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32)
    return attn_weight.to(query.dtype) @ value, lse


def sdpa_checkpoint(*args, **kwargs):
    return checkpoint(sdpa, *args, use_reentrant=False, **kwargs)


def reference_torch_prefill(
    s_q, s_kv, topk, indices, q, kv, sm_scale: float
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
    def log2sumexp2(a: torch.Tensor, dim: int) -> torch.Tensor:
        return torch.logsumexp(a * math.log(2), dim=dim) * math.log2(math.e)

    indices = indices[0, :, 0, :]  # [s_q, topk]
    invalid_indices_mask = (indices < 0) | (indices >= s_kv)
    qs = q[0, :, :, :].float()  # [s_q, h_q, d_qk]
    kvs = kv[0, :, 0, :].float()  # [s_kv, d_qk]

    kvs = torch.index_select(
        kvs, 0, indices.masked_fill(invalid_indices_mask, 0).flatten()
    ).view(
        s_q, topk, 576
    )  # [s_q, topk, d_qk]
    attn_score = qs @ kvs.transpose(1, 2)  # [s_q, h_q, topk]
    attn_score.masked_fill_(invalid_indices_mask.unsqueeze(1), float("-inf"))
    attn_score *= sm_scale * math.log2(math.e)
    max_logits = torch.max(attn_score, dim=-1)[0]  # [s_q, h_q]
    lse = log2sumexp2(attn_score, dim=-1)  # [s_q, h_q]
    attn_score = torch.exp2(attn_score - lse.unsqueeze(-1))  # [s_q, h_q, topk]
    result = attn_score @ kvs[:, :, :512]
    return (max_logits, lse, result)


def reference_torch_decode(
    cache_seqlens: torch.Tensor,  # [batch_size]
    block_table: torch.Tensor,  # [batch_size, ?]
    q: torch.Tensor,  # [batch_size, s_q, h_q, d]
    blocked_k: torch.Tensor,  # [?, block_size, h_kv, d]
    dv: int,
    is_causal: bool,
    indices: Optional[torch.Tensor] = None,  # [batch_size, s_q, topk]
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    A reference implementation in PyTorch
    """

    def get_topk_attn_mask(s_q: int, s_k: int, indices: torch.Tensor):
        mask = torch.zeros(s_q, s_k, dtype=torch.bool, device="cuda")
        for i in range(s_q):
            cur_indices = indices[i]
            valid_indices = cur_indices[cur_indices != -1]
            mask[i, valid_indices] = True
        return mask

    def scaled_dot_product_attention(
        batch_idx: int,
        query: torch.Tensor,  # [h_q, s_q, d]
        kv: torch.Tensor,  # [h_kv, s_k, d]
        dv: int,
        is_causal,
        indices: Optional[torch.Tensor],  # [s_q, topk]
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        h_q = query.size(0)
        h_kv = kv.size(0)
        s_q = query.shape[-2]
        s_k = kv.shape[-2]
        query = query.float()
        kv = kv.float()
        if h_kv != 1:
            kv = kv.repeat_interleave(h_q // h_kv, dim=0)
        kv[kv != kv] = 0.0
        attn_weight = query @ kv.transpose(-2, -1)  # [h_q, s_q, s_k]
        if (is_causal and query.size(1) > 1) or indices is not None:
            mask = torch.ones(s_q, s_k, dtype=torch.bool, device="cuda")
            if is_causal:
                assert indices is None
                mask = mask.tril(diagonal=s_k - s_q)
            if indices is not None:
                mask &= get_topk_attn_mask(s_q, s_k, indices)
            attn_bias = torch.zeros(s_q, s_k, dtype=torch.float, device="cuda")
            attn_bias.masked_fill_(mask.logical_not(), float("-inf"))
            attn_weight += attn_bias.to(q.dtype)
        attn_weight /= math.sqrt(query.size(-1))
        lse = attn_weight.logsumexp(dim=-1)  # [h_q, s_q]
        attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32)
        output = attn_weight @ kv[..., :dv]  # [h_q, s_q, dv]
        # Correct for q tokens which has no attendable k
        lonely_q_mask = lse == float("-inf")
        output[lonely_q_mask.unsqueeze(-1).broadcast_to(h_q, s_q, dv)] = 0.0
        lse[lonely_q_mask] = float("+inf")

        return output, lse

    b, s_q, h_q, d = q.size()
    block_size = blocked_k.size(1)
    h_kv = blocked_k.size(2)
    cache_seqlens_cpu = cache_seqlens.cpu()
    out_ref = torch.empty(b, s_q, h_q, dv, dtype=torch.float32, device="cuda")
    lse_ref = torch.empty(b, h_q, s_q, dtype=torch.float32, device="cuda")
    for i in range(b):
        cur_len = cache_seqlens_cpu[i].item()
        cur_num_blocks = cdiv(cur_len, block_size)
        cur_block_indices = block_table[i][0:cur_num_blocks]
        cur_kv = blocked_k[cur_block_indices].view(-1, h_kv, d)[:cur_len, ...]
        cur_out, cur_lse = scaled_dot_product_attention(
            i,
            q[i].transpose(0, 1),
            cur_kv.transpose(0, 1),
            dv,
            is_causal,
            indices[i] if indices is not None else None,
        )
        out_ref[i] = cur_out.transpose(0, 1)
        lse_ref[i] = cur_lse
    out_ref = out_ref.to(torch.bfloat16)
    return out_ref, lse_ref


@pytest.mark.parametrize("s_q", S_Q_PREFILL)
@pytest.mark.parametrize("kv_topk", KV_TOPK_PREFILL)
@torch.inference_mode()
def test_flashmla_prefill(
    s_q: int,
    kv_topk: Tuple[int, int],
):

    torch.cuda.empty_cache()

    q = torch.randn((1, s_q, 128, 576), dtype=torch.bfloat16, device="cuda") / 10
    kv = torch.randn((1, kv_topk[0], 1, 576), dtype=torch.bfloat16, device="cuda") / 10

    q.clamp_(-10, 10)
    kv.clamp_(-10, 10)

    indices = torch.full(
        (1, s_q, 1, kv_topk[1]), kv_topk[0], dtype=torch.int32, device="cuda"
    )
    for s in range(s_q):
        # NOTE We use the following method to generate indices so that most indices lies within [s_kv-20000, s_kv), which is more realistic for sparse attention
        near_mask = (
            torch.randint(0, 32, (min(kv_topk[1], kv_topk[0]),), device="cuda") < 31
        )
        cur_indices = torch.randperm(kv_topk[0], device="cuda")[: kv_topk[1]]
        cur_indices[near_mask] = torch.randint(
            max(0, kv_topk[0] - 20000),
            kv_topk[0] - 1,
            (near_mask.sum().item(),),
            device="cuda",
        )
        if len(cur_indices) < kv_topk[1]:
            cur_indices = torch.cat(
                [
                    cur_indices,
                    torch.full(
                        (kv_topk[1] - len(cur_indices),), 2147480000, device="cuda"
                    ),
                ]
            )
        cur_indices = cur_indices[torch.randperm(kv_topk[1], device="cuda")]
        indices[0, s, 0] = cur_indices
    indices = indices.to(q.device)

    sm_scale = 1 / math.sqrt(576)
    torch.cuda.synchronize()

    ans_out, ans_max_logits, ans_lse = flash_mla_sparse_fwd(
        q.squeeze(0), kv.squeeze(0), indices.squeeze(0), sm_scale=sm_scale
    )

    ans_out, ans_max_logits, ans_lse = (
        ans_out.float(),
        ans_max_logits.float(),
        ans_lse.float(),
    )

    torch.cuda.synchronize()
    ref_max_logits, ref_lse, ref_out = reference_torch_prefill(
        s_q, kv_topk[0], kv_topk[1], indices, q, kv, sm_scale
    )
    torch.cuda.synchronize()

    torch.testing.assert_close(ans_out, ref_out, atol=8e-4, rtol=2.01 / 128)
    torch.testing.assert_close(
        ans_max_logits,
        ref_max_logits,
        atol=1e-6,
        rtol=2.01 / 65536,
    )
    torch.testing.assert_close(ans_lse, ref_lse, atol=1e-6, rtol=2.01 / 65536)


@pytest.mark.parametrize("b", B_DECODE)
@pytest.mark.parametrize("s_q", S_Q_DECODE)
@pytest.mark.parametrize("s_k", S_K_DECODE)
@pytest.mark.parametrize("is_varlen", IS_VARLEN)
@pytest.mark.parametrize("causal_topk", CAUSAL_TOPK)
@pytest.mark.parametrize("dtype", DTYPE)
@torch.inference_mode()
def test_flash_mla_decode(
    b: int,
    s_q: int,
    s_k: int,
    is_varlen: bool,
    causal_topk: Tuple[bool, Optional[int]],
    dtype: torch.dtype,
):
    d = 576
    dv = 512
    block_size = 64
    h_q = 128
    h_kv = 1
    is_causal = causal_topk[0]
    topk = causal_topk[1]

    # Generating test data
    torch.cuda.synchronize()

    cache_seqlens_cpu = torch.full((b,), s_k, dtype=torch.int32, device="cpu")
    if is_varlen:
        for i in range(b):
            cache_seqlens_cpu[i] = max(random.normalvariate(s_k, s_k / 2), s_q)

    max_seqlen = cache_seqlens_cpu.max().item()
    max_seqlen_pad = cdiv(max_seqlen, 256) * 256
    cache_seqlens = cache_seqlens_cpu.cuda()

    q = torch.randn(b, s_q, 128, d, dtype=torch.bfloat16, device="cuda")
    q.clamp_(min=-1.0, max=1.0)

    block_table = torch.arange(
        b * max_seqlen_pad // block_size, dtype=torch.int32, device="cuda"
    ).view(b, max_seqlen_pad // block_size)
    block_table = block_table.view(-1)[torch.randperm(block_table.numel())].view(b, -1)
    blocked_k = (
        torch.randn(
            block_table.numel(),
            block_size,
            h_kv,
            d,
            dtype=torch.bfloat16,
            device="cuda",
        )
        / 10
    )
    blocked_k.clamp_(min=-1.0, max=1.0)

    if topk is None:
        for i in range(b):
            cur_len = cache_seqlens_cpu[i].item()
            cur_num_blocks = cdiv(cur_len, block_size)
            blocked_k[block_table[i][cur_num_blocks:]] = float("nan")
            if cur_len % block_size != 0:
                blocked_k[block_table[i][cur_num_blocks - 1]][
                    cur_len % block_size :
                ] = float("nan")
            block_table[i][cur_num_blocks:] = 2147480000
        abs_indices = None
        indices_in_kvcache = None
    else:
        block_table_cpu = block_table.cpu()
        abs_indices = torch.empty(b, s_q, topk, dtype=torch.int32, device="cpu")
        indices_in_kvcache = torch.empty(b, s_q, topk, dtype=torch.int32, device="cpu")
        for i in range(b):
            # Generate indices
            for j in range(s_q):
                cur_abs_indices = torch.randperm(
                    int(cache_seqlens_cpu[i].item()), device="cpu"
                )[:topk]
                cur_blocked_indices = block_table_cpu[
                    i, cur_abs_indices // block_size
                ] * block_size + (cur_abs_indices % block_size)
                if len(cur_abs_indices) < topk:
                    pad_len = topk - len(cur_abs_indices)
                    cur_abs_indices = torch.cat(
                        [cur_abs_indices, torch.full((pad_len,), -1, device="cpu")]
                    )
                    cur_blocked_indices = torch.cat(
                        [cur_blocked_indices, torch.full((pad_len,), -1, device="cpu")]
                    )

                # Mask KV
                perm = torch.randperm(topk, device="cpu")
                cur_abs_indices = cur_abs_indices[perm]
                cur_blocked_indices = cur_blocked_indices[perm]

                abs_indices[i, j, :] = cur_abs_indices
                indices_in_kvcache[i, j, :] = cur_blocked_indices

        # Mask nonused KV as NaN
        all_indices = indices_in_kvcache.flatten().tolist()
        all_indices = list(set(all_indices))
        if -1 in all_indices:
            all_indices.remove(-1)
        all_indices = torch.tensor(all_indices, dtype=torch.int32, device="cpu")

        blocked_k = blocked_k.view(-1, h_kv, d)
        nonused_indices_mask = torch.ones(
            blocked_k.size(0) * blocked_k.size(1), dtype=torch.bool, device="cpu"
        )
        nonused_indices_mask[all_indices] = False
        blocked_k[nonused_indices_mask, :, :] = float("nan")
        blocked_k = blocked_k.view(-1, block_size, h_kv, d)

        abs_indices = abs_indices.to(q.device)
        indices_in_kvcache = indices_in_kvcache.to(q.device)

    is_fp8 = topk is not None
    if is_fp8:
        # The quantization error may be too large to be distinguished from wrong kernels
        # So we quantize and de-quantize kv-cache here to mitigate quantization error
        blocked_k_quantized = quantize_k_cache(blocked_k, dv, 128)
        blocked_k_dequantized = dequantize_k_cache(blocked_k_quantized)
        blocked_k = blocked_k_dequantized

    # Get schedule metadata
    torch.cuda.synchronize()
    tile_scheduler_metadata, num_splits = get_mla_metadata(
        cache_seqlens, s_q * h_q // h_kv, h_kv, h_q, is_fp8, topk
    )
    torch.cuda.synchronize()

    out_ans, lse_ans = flash_mla_with_kvcache(
        q,
        blocked_k if not is_fp8 else blocked_k_quantized,  # type: ignore
        block_table,
        cache_seqlens,
        dv,
        tile_scheduler_metadata,
        num_splits,
        causal=is_causal,
        is_fp8_kvcache=is_fp8,
        indices=indices_in_kvcache,
    )

    out_ref, lse_ref = reference_torch_decode(
        cache_seqlens, block_table, q, blocked_k, dv, is_causal, abs_indices
    )
    torch.testing.assert_close(out_ans, out_ref, atol=8e-4, rtol=2.01 / 128)
    torch.testing.assert_close(lse_ans, lse_ref, atol=1e-6, rtol=8.01 / 65536)


if __name__ == "__main__":
    pytest.main([__file__])