test_pp_single_node.py 9.71 KB
Newer Older
1
2
3
"""
Usage:
python3 -m unittest test_pp_single_node.TestPPAccuracy.test_gsm8k
4
python3 -m unittest test_pp_single_node.TestQwenPPAccuracy.test_pp_consistency
5
6
7
8
9
10
11
python3 -m unittest test_pp_single_node.TestFixedBugs.test_chunked_prefill_with_small_bs
"""

import time
import unittest
from types import SimpleNamespace

12
13
import requests

14
15
16
from sglang.bench_one_batch_server import BenchArgs as OneBatchBenchArgs
from sglang.srt.server_args import ServerArgs
from sglang.srt.utils import kill_process_tree
17
18
from sglang.test.few_shot_gsm8k import run_eval as run_eval_few_shot_gsm8k
from sglang.test.run_eval import run_eval
19
from sglang.test.test_utils import (
20
    DEFAULT_MLA_MODEL_NAME_FOR_TEST,
21
22
23
    DEFAULT_MODEL_NAME_FOR_TEST,
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
24
    CustomTestCase,
25
    is_in_ci,
26
27
28
29
30
31
32
33
34
35
36
37
38
39
    popen_launch_server,
    run_bench_one_batch_server,
)


class TestPPAccuracy(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.base_url = "http://127.0.0.1:23333"
        cls.process = popen_launch_server(
            DEFAULT_MODEL_NAME_FOR_TEST,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
40
41
                "--tp-size",
                2,
42
                "--pp-size",
43
                2,
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
                "--chunked-prefill-size",
                256,
            ],
        )

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def test_gsm8k(self):
        args = SimpleNamespace(
            num_shots=5,
            data_path=None,
            num_questions=200,
            max_new_tokens=512,
            parallel=128,
            host="http://127.0.0.1",
            port=int(self.base_url.split(":")[-1]),
        )
63
        metrics = run_eval_few_shot_gsm8k(args)
64
65
        print(f"{metrics=}")

Cheng Wan's avatar
Cheng Wan committed
66
        self.assertGreater(metrics["accuracy"], 0.74)
67
        # Wait a little bit so that the memory check happens.
68
        time.sleep(4)
69

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    def test_logprob(self):
        response = requests.post(
            f"{self.base_url}/generate",
            json={
                "text": "The capital of France is",
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": 16,
                },
                "return_logprob": True,
                "top_logprobs_num": 5,
                "logprob_start_len": 0,
            },
        )
        response_json = response.json()
        input_token_logprobs = response_json["meta_info"]["input_token_logprobs"]
        output_token_logprobs = response_json["meta_info"]["output_token_logprobs"]
        output_top_logprobs = response_json["meta_info"]["output_top_logprobs"]

        assert len(input_token_logprobs) == 6
        assert len(output_token_logprobs) == 16
        assert len(output_top_logprobs) == 16

93

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
class TestDPAttentionDP2PP2(CustomTestCase):
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_MLA_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--trust-remote-code",
                "--tp",
                "2",
                "--pp-size",
                "2",
                "--enable-dp-attention",
                "--dp",
                "2",
            ],
        )

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def test_mgsm_en(self):
        args = SimpleNamespace(
            base_url=self.base_url,
            model=self.model,
            eval_name="mgsm_en",
            num_examples=None,
            num_threads=1024,
        )

        metrics = run_eval(args)
        print(f"{metrics=}")
        self.assertGreater(metrics["score"], 0.8)


133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
class TestQwenPPAccuracy(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.base_url = "http://127.0.0.1:23334"  # different ports to avoid conflicts
        cls.model_name = "Qwen/Qwen3-8B"  # replace with your Qwen Model if needed

    def run_gsm8k_test(self, pp_size):
        process = popen_launch_server(
            self.model_name,
            self.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--pp-size",
                pp_size,
                "--chunked-prefill-size",
                256,
            ],
        )

        try:
            args = SimpleNamespace(
                num_shots=5,
                data_path=None,
                num_questions=200,
                max_new_tokens=512,
                parallel=128,
                host="http://127.0.0.1",
                port=int(self.base_url.split(":")[-1]),
            )
162
            metrics = run_eval_few_shot_gsm8k(args)
163
164
165
166
167
            time.sleep(5)
            return metrics
        finally:
            kill_process_tree(process.pid)

168
    @unittest.skipIf(is_in_ci(), "To reduce the CI execution time.")
169
170
171
172
173
174
    def test_pp_consistency(self):
        baseline = self.run_gsm8k_test(pp_size=1)
        pp_metrics = self.run_gsm8k_test(pp_size=2)

        print(f"[Qwen PP Comparison] Baseline: {baseline} | PP: {pp_metrics}")

175
        self.assertGreaterEqual(baseline["accuracy"], 0.74)
176
        self.assertGreaterEqual(
177
            pp_metrics["accuracy"],
178
            baseline["accuracy"] - 0.02,
179
180
181
182
            msg=(
                f"PP accuracy dropped more than 1% compared to baseline. "
                f"Baseline: {baseline['accuracy']:.2%}, PP: {pp_metrics['accuracy']:.2%}"
            ),
183
184
185
186
187
188
        )


class TestQwenPPTieWeightsAccuracy(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
iLeGend's avatar
iLeGend committed
189
        cls.base_url = "http://127.0.0.1:23335"  # different ports to avoid conflicts
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
        cls.model_name = (
            "Qwen/Qwen3-0.6B"  # qwen3 < 8B all have tie_word_embeddings = True
        )

    def run_gsm8k_test(self, pp_size):
        process = popen_launch_server(
            self.model_name,
            self.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--pp-size",
                pp_size,
                "--chunked-prefill-size",
                256,
            ],
        )

        try:
            args = SimpleNamespace(
                num_shots=5,
                data_path=None,
                num_questions=200,
                max_new_tokens=512,
                parallel=128,
                host="http://127.0.0.1",
                port=int(self.base_url.split(":")[-1]),
            )
217
            metrics = run_eval_few_shot_gsm8k(args)
218
219
220
221
222
            time.sleep(5)
            return metrics
        finally:
            kill_process_tree(process.pid)

iLeGend's avatar
iLeGend committed
223
224
225
226
227
228
    def test_pp_consistency(self):
        baseline = self.run_gsm8k_test(pp_size=1)
        pp_metrics = self.run_gsm8k_test(pp_size=2)

        print(f"[Qwen PP Comparison] Baseline: {baseline} | PP: {pp_metrics}")

229
        self.assertGreaterEqual(baseline["accuracy"], 0.38)
iLeGend's avatar
iLeGend committed
230
231
        self.assertGreaterEqual(
            pp_metrics["accuracy"],
232
            baseline["accuracy"] - 0.02,
iLeGend's avatar
iLeGend committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
            msg=(
                f"PP accuracy dropped more than 1% compared to baseline. "
                f"Baseline: {baseline['accuracy']:.2%}, PP: {pp_metrics['accuracy']:.2%}"
            ),
        )


class TestQwenMoePPAccuracy(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.base_url = "http://127.0.0.1:23336"  # different ports to avoid conflicts
        cls.model_name = "Qwen/Qwen3-30B-A3B"  # replace with your Qwen Model if needed

    def run_gsm8k_test(self, pp_size):
        process = popen_launch_server(
            self.model_name,
            self.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--pp-size",
                pp_size,
                "--chunked-prefill-size",
                256,
            ],
        )

        try:
            args = SimpleNamespace(
                num_shots=5,
                data_path=None,
                num_questions=200,
                max_new_tokens=512,
                parallel=128,
                host="http://127.0.0.1",
                port=int(self.base_url.split(":")[-1]),
            )
269
            metrics = run_eval_few_shot_gsm8k(args)
iLeGend's avatar
iLeGend committed
270
271
272
273
274
            time.sleep(5)
            return metrics
        finally:
            kill_process_tree(process.pid)

275
276
277
278
279
280
    def test_pp_consistency(self):
        baseline = self.run_gsm8k_test(pp_size=1)
        pp_metrics = self.run_gsm8k_test(pp_size=2)

        print(f"[Qwen PP Comparison] Baseline: {baseline} | PP: {pp_metrics}")

281
        self.assertGreaterEqual(baseline["accuracy"], 0.74)
282
        self.assertGreaterEqual(
283
            pp_metrics["accuracy"],
284
            baseline["accuracy"] - 0.02,
285
286
287
288
            msg=(
                f"PP accuracy dropped more than 1% compared to baseline. "
                f"Baseline: {baseline['accuracy']:.2%}, PP: {pp_metrics['accuracy']:.2%}"
            ),
289
290
291
        )


292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
class TestFixedBugs(unittest.TestCase):
    def test_chunked_prefill_with_small_bs(self):
        model = DEFAULT_MODEL_NAME_FOR_TEST
        server_args = ServerArgs(model_path=model)
        bench_args = OneBatchBenchArgs(
            batch_size=(1,),
            input_len=(1,),
            output_len=(1,),
            base_url=DEFAULT_URL_FOR_TEST,
        )
        other_server_args = [
            "--tp-size",
            2,
            "--pp-size",
            2,
            "--chunked-prefill",
            256,
            "--max-running-requests",
            2,
        ]
        run_bench_one_batch_server(
            model,
            DEFAULT_URL_FOR_TEST,
            server_args,
            bench_args,
            other_server_args,
        )


if __name__ == "__main__":
    unittest.main()