test_per_token_group_quant_8bit.py 5.31 KB
Newer Older
1
import itertools
2
3
4
import os
import time
from pathlib import Path
5
6
7

import pytest
import torch
8
9
10
11
from sgl_kernel.test_utils import (
    assert_all_close_or_tiny_diff,
    create_per_token_group_quant_test_data,
)
12

13
14
15
16
from sglang.srt.layers.quantization.fp8_kernel import (
    per_token_group_quant_8bit as triton_per_token_group_quant_8bit,
)
from sglang.srt.layers.quantization.fp8_kernel import sglang_per_token_group_quant_8bit
17
from sglang.srt.utils import get_bool_env_var, is_hip
18

19
20
_is_hip = is_hip()
fp8_type_ = torch.float8_e4m3fnuz if _is_hip else torch.float8_e4m3fn
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
configs = list(
    itertools.product(
        [1, 4, 16, 64, 127, 128, 512, 1024, 4096, 8192],  # num_tokens
        [128, 256, 384, 512, 1024, 1536, 1664, 2048, 4096, 7168, 16384],  # hidden_dim
        [16, 32, 64, 128],  # group_size
        [None],  # num_ranks
        [fp8_type_, torch.int8],  # dtype
        [
            dict(
                column_major_scales=False,
                scale_tma_aligned=False,
                scale_ue8m0=False,
                fuse_silu_and_mul=False,
                masked_layout_mode=None,
            ),
            dict(
                column_major_scales=True,
                scale_tma_aligned=False,
                scale_ue8m0=False,
                fuse_silu_and_mul=False,
                masked_layout_mode=None,
            ),
            dict(
                column_major_scales=True,
                scale_tma_aligned=True,
                scale_ue8m0=False,
                fuse_silu_and_mul=False,
                masked_layout_mode=None,
            ),
            dict(
                column_major_scales=True,
                scale_tma_aligned=True,
                scale_ue8m0=True,
                fuse_silu_and_mul=False,
                masked_layout_mode=None,
            ),
        ],
    )
) + list(
    itertools.product(
        [1, 4, 1 * 8, 4 * 8, 64 * 8, 256 * 8, 768 * 8],
        # TODO support more
        [2048],
        [128],
        [8, 16, 32, 48],
        [fp8_type_],
        [
            dict(
                column_major_scales=True,
                scale_tma_aligned=True,
                scale_ue8m0=True,
                fuse_silu_and_mul=True,
                masked_layout_mode=None,
            ),
            dict(
                column_major_scales=True,
                scale_tma_aligned=True,
                scale_ue8m0=True,
                fuse_silu_and_mul=True,
                masked_layout_mode="balanced",
            ),
            dict(
                column_major_scales=True,
                scale_tma_aligned=True,
                scale_ue8m0=True,
                fuse_silu_and_mul=True,
                masked_layout_mode="imbalanced",
            ),
            dict(
                column_major_scales=True,
                scale_tma_aligned=True,
                scale_ue8m0=True,
                fuse_silu_and_mul=True,
                masked_layout_mode="extreme",
            ),
        ],
    )
)

101
102

@pytest.mark.parametrize(
103
    "num_tokens, hidden_dim, group_size, num_ranks, dst_dtype, flags", configs
104
)
105
106
107
108
def test_per_token_group_quant_with_column_major(
    num_tokens,
    hidden_dim,
    group_size,
109
    num_ranks,
110
    dst_dtype,
111
    flags,
112
):
113
114
115
116
117
118
119
    print(
        f"{num_tokens=} {hidden_dim=} {group_size=} {num_ranks=} {dst_dtype=} {flags=}"
    )

    arch_major, _ = torch.cuda.get_device_capability(torch.cuda.current_device())
    if flags["scale_ue8m0"] and (arch_major <= 9):
        pytest.skip("Only Blackwell need ue8m0 fusion")
120
        return
121
122
123
124
125

    if (flags["scale_ue8m0"] and (group_size != 128)) or (
        (dst_dtype == torch.int8) and flags["column_major_scales"]
    ):
        pytest.skip()
126
        return
127

128
129
130
131
132
133
    x, masked_m = create_per_token_group_quant_test_data(
        num_tokens=num_tokens, hidden_dim=hidden_dim, num_ranks=num_ranks, flags=flags
    )

    # print("hack data!!!")
    # x = torch.full_like(x, fill_value=100)
134

135
136
    execute_kwargs = dict(
        x=x,
137
        masked_m=masked_m,
138
        group_size=group_size,
139
        eps=1e-10,
140
        dst_dtype=dst_dtype,
141
        **{k: v for k, v in flags.items() if k not in ["masked_layout_mode"]},
142
143
    )

144
145
146
147
148
149
150
151
152
153
154
155
156
    def _postprocess(x_q, x_s):
        if masked_m is not None:
            print(f"Mask tokens after {masked_m} to be zero")
            for i in range(len(masked_m)):
                x_q[i, masked_m[i] :, :] = 0
                x_s[i, masked_m[i] :, :] = 0
        return x_q, x_s

    x_q_triton, x_s_triton = _postprocess(
        *triton_per_token_group_quant_8bit(**execute_kwargs)
    )
    x_q_sglang, x_s_sglang = _postprocess(
        *sglang_per_token_group_quant_8bit(**execute_kwargs, enable_v2=True)
157
    )
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    try:
        assert_all_close_or_tiny_diff(x_q_triton, x_q_sglang)
        torch.testing.assert_close(
            x_s_triton.contiguous(),
            x_s_sglang.contiguous(),
            rtol=1e-3,
            atol=1e-5,
            msg=lambda message: message + f" {x_s_triton=} {x_s_sglang=}",
        )
    except AssertionError:
        print(
            f"{x.shape=} {x_q_triton.shape=} {x_s_triton.shape=} {x_q_sglang.shape=} {x_s_sglang.shape=}"
        )
        print(f"{x=}")
        print(f"{masked_m=}")
        print(f"{x_q_triton=}")
        print(f"{x_s_triton=}")
        print(f"{x_q_sglang=}")
        print(f"{x_s_sglang=}")

        raise

181
182
183

if __name__ == "__main__":
    pytest.main([__file__])