test_triton_moe_wna16.py 8.04 KB
Newer Older
AniZpZ's avatar
AniZpZ committed
1
2
3
4
5
6
7
from typing import Optional

import pytest
import torch

from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_moe
8
from sglang.srt.layers.moe.topk import TopKConfig, select_experts
fzyzcjy's avatar
fzyzcjy committed
9
from sglang.srt.server_args import ServerArgs, set_global_server_args_for_scheduler
AniZpZ's avatar
AniZpZ committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

NUM_EXPERTS = [8, 64]
TOP_KS = [2, 6]


def quantize_weights(
    w: torch.Tensor,
    quant_type: str,
    group_size: Optional[int],
    zero_points: bool = False,
    ref_zero_points_after_scales: bool = False,
):
    assert quant_type in ["w4a16", "w4a16b8", "w8a16", "w8a16b128"]
    assert not zero_points or group_size is not None, (
        "to have group zero points, group_size must be provided "
        "(-1 group_size is channelwise)"
    )

    orig_device = w.device
    orig_type = w.dtype
    size_k, size_n = w.shape

    assert w.is_floating_point(), "w must be float"

    if group_size == -1:
        group_size = size_k

    # Reshape to [groupsize, -1]
    if group_size is not None and group_size < size_k:
        w = w.reshape((-1, group_size, size_n))
        w = w.permute(1, 0, 2)
        w = w.reshape((group_size, -1))

    # Compute scale for each group
    max_val = torch.max(w, 0, keepdim=True).values
    min_val = torch.min(w, 0, keepdim=True).values

    if quant_type == "w4a16":
        max_q_val = 15
        min_q_val = 0
    elif quant_type == "w4a16b8":
        max_q_val = 7
        min_q_val = -1
    elif quant_type == "w8a16":
        max_q_val = 255
        min_q_val = 0
    elif quant_type == "w8a16b128":
        max_q_val = 127
        min_q_val = -128

    w_s = torch.Tensor([1.0]).to(w.device)  # unscaled case
    maybe_w_zp = None
    if group_size is not None:
        if zero_points:
            w_s = (max_val - min_val).clamp(min=1e-5) / max_q_val
            maybe_w_zp = (
                torch.round(torch.abs(min_val / w_s)).clamp(min_q_val, max_q_val).int()
            )
        else:
            # If the bias is such that there are no possible negative/positive
            #  values, set the max value to inf to avoid divide by 0
            w_s = torch.max(
                abs(max_val / (max_q_val if max_q_val != 0 else torch.inf)),
                abs(min_val / (min_q_val if min_q_val != 0 else torch.inf)),
            )

    # Quantize
    w_q = torch.round(w / w_s).int() + (maybe_w_zp if zero_points else 0)
    w_q = torch.clamp(w_q, min_q_val, max_q_val)

    # Compute ref (dequantized)
    # For some kernels (namely Machete) the zero-points are applied after the
    # scales are applied, for this case computing the reference in similar way
    # allows us to use tighter error tolerances in our unit tests.
    if ref_zero_points_after_scales and maybe_w_zp is not None:
        w_ref = w_q.to(orig_type) * w_s - maybe_w_zp.to(orig_type) * w_s
    else:
        w_ref = (w_q - (maybe_w_zp if zero_points else 0)).to(orig_type) * w_s

    if quant_type == "w4a16b8":
        w_q += 8
    elif quant_type == "w8a16b128":
        w_q += 128

    # Restore original shapes
    if group_size is not None and group_size < size_k:

        def reshape_w(w):
            w = w.reshape((group_size, -1, size_n))
            w = w.permute(1, 0, 2)
            w = w.reshape((size_k, size_n)).contiguous()
            return w

        w_q = reshape_w(w_q)
        w_ref = reshape_w(w_ref)
        w_s = w_s.reshape((-1, size_n)).contiguous()

    if maybe_w_zp is not None:
        maybe_w_zp = maybe_w_zp.reshape((-1, size_n)).contiguous()
        maybe_w_zp = maybe_w_zp.to(device=orig_device)

    return (
        w_ref.to(device=orig_device),
        w_q.to(device=orig_device),
        w_s if group_size is not None else None,
        maybe_w_zp,
    )


def torch_moe(a, w1, w2, score, topk):
fzyzcjy's avatar
fzyzcjy committed
120
121
    set_global_server_args_for_scheduler(ServerArgs(model_path="dummy"))

AniZpZ's avatar
AniZpZ committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    B, D = a.shape
    a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
    out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device)
    score = torch.softmax(score, dim=-1, dtype=torch.float32)
    topk_weight, topk_ids = torch.topk(score, topk)
    topk_weight = topk_weight.view(-1)
    topk_ids = topk_ids.view(-1)
    for i in range(w1.shape[0]):
        mask = topk_ids == i
        if mask.sum():
            out[mask] = SiluAndMul()(a[mask] @ w1[i].transpose(0, 1)) @ w2[i].transpose(
                0, 1
            )
    return (
        out.view(B, -1, w2.shape[1]) * topk_weight.view(B, -1, 1).to(out.dtype)
    ).sum(dim=1)


# fork from https://github.com/vllm-project/vllm/blob/main/tests/kernels/test_moe.py
@pytest.mark.parametrize("m", [1, 32, 222])
@pytest.mark.parametrize("n", [128, 1024, 2048])
@pytest.mark.parametrize("k", [128, 1024])
@pytest.mark.parametrize("e", NUM_EXPERTS)
@pytest.mark.parametrize("topk", TOP_KS)
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("group_size", [64, 128])
@pytest.mark.parametrize("has_zp", [True, False])
@pytest.mark.parametrize("weight_bits", [8])  # [4, 8])
def test_fused_moe_wn16(
    m: int,
    n: int,
    k: int,
    e: int,
    topk: int,
    dtype: torch.dtype,
    group_size: int,
    has_zp: bool,
    weight_bits: int,
):
    print(m, n, k, e, topk, dtype, group_size, has_zp, weight_bits)
    a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
    w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10
    w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10
    score = torch.randn((m, e), device="cuda", dtype=dtype)

    if weight_bits == 4:
        pack_factor = 2
        quant_type = "w4a16" if has_zp else "w4a16b8"
    elif weight_bits == 8:
        pack_factor = 1
        quant_type = "w8a16" if has_zp else "w8a16b128"

    w1_ref = w1.clone()
    w2_ref = w2.clone()
    w1_qweight = torch.empty(
        (e, 2 * n, k // pack_factor), device="cuda", dtype=torch.uint8
    )
    w2_qweight = torch.empty((e, k, n // pack_factor), device="cuda", dtype=torch.uint8)
    w1_scales = torch.empty((e, 2 * n, k // group_size), device="cuda", dtype=dtype)
    w2_scales = torch.empty((e, k, n // group_size), device="cuda", dtype=dtype)
    w1_qzeros = torch.empty(
        (e, 2 * n // pack_factor, k // group_size), device="cuda", dtype=torch.uint8
    )
    w2_qzeros = torch.empty(
        (e, k // pack_factor, n // group_size), device="cuda", dtype=torch.uint8
    )

    for i in range(e * 2):
        expert_id = i % e
        if i // e == 0:
            w, w_ref, w_qweight, w_scales, w_qzeros = (
                w1,
                w1_ref,
                w1_qweight,
                w1_scales,
                w1_qzeros,
            )
        else:
            w, w_ref, w_qweight, w_scales, w_qzeros = (
                w2,
                w2_ref,
                w2_qweight,
                w2_scales,
                w2_qzeros,
            )
        weight, qweight, scales, qzeros = quantize_weights(
            w[expert_id].T, quant_type, group_size, has_zp, False
        )
        weight = weight.T
        qweight = qweight.T.contiguous().to(torch.uint8)
        scales = scales.T
        if has_zp:
            qzeros = qzeros.T.contiguous().to(torch.uint8)
        if weight_bits == 4:
            qweight = qweight[:, 1::2] * 16 + qweight[:, ::2]
            if has_zp:
                qzeros = qzeros[1::2, :] * 16 + qzeros[::2, :]

        w_ref[expert_id] = weight
        w_qweight[expert_id] = qweight
        w_scales[expert_id] = scales
        if has_zp:
            w_qzeros[expert_id] = qzeros

226
227
228
    topk_output = select_experts(
        hidden_states=a,
        router_logits=score,
229
        topk_config=TopKConfig(top_k=topk),
230
231
    )

AniZpZ's avatar
AniZpZ committed
232
233
234
235
    triton_output = fused_moe(
        a,
        w1_qweight,
        w2_qweight,
236
        topk_output,
AniZpZ's avatar
AniZpZ committed
237
238
239
240
241
242
243
244
245
246
        use_int4_w4a16=weight_bits == 4,
        use_int8_w8a16=weight_bits == 8,
        w1_scale=w1_scales,
        w2_scale=w2_scales,
        w1_zp=w1_qzeros if has_zp else None,
        w2_zp=w2_qzeros if has_zp else None,
        block_shape=[0, group_size],
    )
    torch_output = torch_moe(a, w1_ref, w2_ref, score, topk)
    torch.testing.assert_close(triton_output, torch_output, atol=2e-2, rtol=0)