deepseek_v2.py 31.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

Liangsheng Yin's avatar
Liangsheng Yin committed
15
16
17
# Adapted from:
# https://github.com/vllm-project/vllm/blob/fb6af8bc086328ca6659e72d11ffd4309ce4de22/vllm/model_executor/models/deepseek_v2.py
"""Inference-only DeepseekV2 model."""
18

Liangsheng Yin's avatar
Liangsheng Yin committed
19
20
21
22
23
24
from typing import Any, Dict, Iterable, Optional, Tuple

import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.distributed import (
Ke Bao's avatar
Ke Bao committed
25
    get_tensor_model_parallel_rank,
Liangsheng Yin's avatar
Liangsheng Yin committed
26
    get_tensor_model_parallel_world_size,
Ke Bao's avatar
Ke Bao committed
27
    get_tp_group,
Liangsheng Yin's avatar
Liangsheng Yin committed
28
29
30
31
32
    tensor_model_parallel_all_reduce,
)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.model_loader.weight_utils import default_weight_loader

33
from sglang.srt.layers.activation import SiluAndMul
34
from sglang.srt.layers.fused_moe_triton import FusedMoE
35
from sglang.srt.layers.layernorm import RMSNorm
36
37
38
39
40
41
from sglang.srt.layers.linear import (
    ColumnParallelLinear,
    MergedColumnParallelLinear,
    ReplicatedLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
42
from sglang.srt.layers.logits_processor import LogitsProcessor
43
from sglang.srt.layers.quantization.base_config import QuantizationConfig
Liangsheng Yin's avatar
Liangsheng Yin committed
44
from sglang.srt.layers.radix_attention import RadixAttention
45
46
47
48
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
49
from sglang.srt.managers.schedule_batch import global_server_args_dict
50
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
51
from sglang.srt.utils import is_flashinfer_available
52

53
if is_flashinfer_available():
54
    from flashinfer import bmm_fp8
Liangsheng Yin's avatar
Liangsheng Yin committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167


class DeepseekV2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


class DeepseekV2MoE(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.routed_scaling_factor = config.routed_scaling_factor
        self.n_shared_experts = config.n_shared_experts
        self.routed_scaling_factor = config.routed_scaling_factor
        if self.tp_size > config.n_routed_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.n_routed_experts}."
            )

        if config.hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {config.hidden_act}. "
                "Only silu is supported for now."
            )

        self.experts = FusedMoE(
            num_experts=config.n_routed_experts,
            top_k=config.num_experts_per_tok,
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
            reduce_results=False,
            renormalize=config.norm_topk_prob,
            quant_config=quant_config,
            use_grouped_topk=True,
            num_expert_group=config.n_group,
            topk_group=config.topk_group,
        )

        self.gate = ReplicatedLinear(
            config.hidden_size, config.n_routed_experts, bias=False, quant_config=None
        )
        if config.n_shared_experts is not None:
            intermediate_size = config.moe_intermediate_size * config.n_shared_experts
            self.shared_experts = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                reduce_results=False,
            )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        num_tokens, hidden_dim = hidden_states.shape
        hidden_states = hidden_states.view(-1, hidden_dim)
        if self.n_shared_experts is not None:
            shared_output = self.shared_experts(hidden_states)
        # router_logits: (num_tokens, n_experts)
        router_logits, _ = self.gate(hidden_states)
        final_hidden_states = (
            self.experts(hidden_states=hidden_states, router_logits=router_logits)
            * self.routed_scaling_factor
        )
        if shared_output is not None:
            final_hidden_states = final_hidden_states + shared_output
        if self.tp_size > 1:
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)

        return final_hidden_states.view(num_tokens, hidden_dim)


def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
    import math

    if scale <= 1:
        return 1.0
    return 0.1 * mscale * math.log(scale) + 1.0


168
169
170
171
172
173
174
175
176
def input_to_float8(x, dtype=torch.float8_e4m3fn):
    finfo = torch.finfo(dtype)
    min_val, max_val = x.aminmax()
    amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12)
    scale = finfo.max / amax
    x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max)
    return x_scl_sat.to(dtype).contiguous(), scale.float().reciprocal()


Liangsheng Yin's avatar
Liangsheng Yin committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
class DeepseekV2Attention(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
192
        cache_config=None,
Liangsheng Yin's avatar
Liangsheng Yin committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        quant_config: Optional[QuantizationConfig] = None,
        layer_id=None,
    ) -> None:
        super().__init__()
        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
        self.num_heads = num_heads
        tp_size = get_tensor_model_parallel_world_size()
        assert num_heads % tp_size == 0
        self.num_local_heads = num_heads // tp_size
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

        if self.q_lora_rank is not None:
            self.q_a_proj = ReplicatedLinear(
                self.hidden_size,
                self.q_lora_rank,
                bias=False,
                quant_config=quant_config,
            )
            self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
            self.q_b_proj = ColumnParallelLinear(
                q_lora_rank,
                self.num_heads * self.qk_head_dim,
                bias=False,
                quant_config=quant_config,
            )
        else:
            self.q_proj = ColumnParallelLinear(
                self.hidden_size,
                self.num_heads * self.qk_head_dim,
                bias=False,
                quant_config=quant_config,
            )

        self.kv_a_proj_with_mqa = ReplicatedLinear(
            self.hidden_size,
            self.kv_lora_rank + self.qk_rope_head_dim,
            bias=False,
            quant_config=quant_config,
        )
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
        self.kv_b_proj = ColumnParallelLinear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
            quant_config=quant_config,
        )
        # O projection.
        self.o_proj = RowParallelLinear(
            self.num_heads * self.v_head_dim,
            self.hidden_size,
            bias=False,
            quant_config=quant_config,
        )
255
        rope_scaling["rope_type"] = "deepseek_yarn"
Liangsheng Yin's avatar
Liangsheng Yin committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
        self.rotary_emb = get_rope(
            qk_rope_head_dim,
            rotary_dim=qk_rope_head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=False,
        )

        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale

        # TODO, support head_size 192
        self.attn = RadixAttention(
            self.num_local_heads,
            256,
            self.scaling,
            num_kv_heads=self.num_local_heads,
            layer_id=layer_id,
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
284
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
285
286
287
288
289
290
291
292
293
    ) -> torch.Tensor:
        if self.q_lora_rank is not None:
            q = self.q_a_proj(hidden_states)[0]
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
294
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
Liangsheng Yin's avatar
Liangsheng Yin committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
        latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
        k_pe = latent_cache[:, :, self.kv_lora_rank :]
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe
        q = torch.nn.functional.pad(q, [0, 256 - self.qk_head_dim], value=0).view(
            -1, self.num_local_heads * 256
        )
        k = torch.nn.functional.pad(k, [0, 256 - self.qk_head_dim], value=0).view(
            -1, self.num_local_heads * 256
        )
        v = torch.nn.functional.pad(v, [0, 256 - self.v_head_dim], value=0).view(
            -1, self.num_local_heads * 256
        )
317
        attn_output = self.attn(q, k, v, forward_batch)
Liangsheng Yin's avatar
Liangsheng Yin committed
318
319
320
321
322
323
324
        attn_output = attn_output.view(-1, self.num_local_heads, 256)[
            ..., : self.v_head_dim
        ].reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output


325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
class DeepseekV2AttentionMLA(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
340
        cache_config=None,
341
342
        quant_config: Optional[QuantizationConfig] = None,
        layer_id=None,
Ke Bao's avatar
Ke Bao committed
343
        use_dp=False,
344
345
346
347
348
349
350
351
352
353
354
355
356
    ) -> None:
        super().__init__()
        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
        self.num_heads = num_heads
        tp_size = get_tensor_model_parallel_world_size()
        assert num_heads % tp_size == 0
Ke Bao's avatar
Ke Bao committed
357
        self.num_local_heads = num_heads if use_dp else num_heads // tp_size
358
359
360
361
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

Ke Bao's avatar
Ke Bao committed
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
        if use_dp:
            # For data parallel attention
            if self.q_lora_rank is not None:
                self.q_a_proj = ReplicatedLinear(
                    self.hidden_size,
                    self.q_lora_rank,
                    bias=False,
                    quant_config=quant_config,
                )
                self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
                self.q_b_proj = ReplicatedLinear(
                    q_lora_rank,
                    self.num_heads * self.qk_head_dim,
                    bias=False,
                    quant_config=quant_config,
                )
            else:
                self.q_proj = ReplicatedLinear(
                    self.hidden_size,
                    self.num_heads * self.qk_head_dim,
                    bias=False,
                    quant_config=quant_config,
                )
            self.kv_b_proj = ReplicatedLinear(
                self.kv_lora_rank,
                self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
388
389
390
                bias=False,
                quant_config=quant_config,
            )
Ke Bao's avatar
Ke Bao committed
391
392
393
394
            # O projection.
            self.o_proj = ReplicatedLinear(
                self.num_heads * self.v_head_dim,
                self.hidden_size,
395
396
397
398
                bias=False,
                quant_config=quant_config,
            )
        else:
Ke Bao's avatar
Ke Bao committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
            # For tensor parallel attention
            if self.q_lora_rank is not None:
                self.q_a_proj = ReplicatedLinear(
                    self.hidden_size,
                    self.q_lora_rank,
                    bias=False,
                    quant_config=quant_config,
                )
                self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
                self.q_b_proj = ColumnParallelLinear(
                    q_lora_rank,
                    self.num_heads * self.qk_head_dim,
                    bias=False,
                    quant_config=quant_config,
                )
            else:
                self.q_proj = ColumnParallelLinear(
                    self.hidden_size,
                    self.num_heads * self.qk_head_dim,
                    bias=False,
                    quant_config=quant_config,
                )
            self.kv_b_proj = ColumnParallelLinear(
                self.kv_lora_rank,
                self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
                bias=False,
                quant_config=quant_config,
            )
            # O projection.
            self.o_proj = RowParallelLinear(
                self.num_heads * self.v_head_dim,
430
431
432
433
434
435
436
437
438
439
440
441
                self.hidden_size,
                bias=False,
                quant_config=quant_config,
            )

        self.kv_a_proj_with_mqa = ReplicatedLinear(
            self.hidden_size,
            self.kv_lora_rank + self.qk_rope_head_dim,
            bias=False,
            quant_config=quant_config,
        )
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
442
        rope_scaling["rope_type"] = "deepseek_yarn"
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
        self.rotary_emb = get_rope(
            qk_rope_head_dim,
            rotary_dim=qk_rope_head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=False,
        )

        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale

        self.attn = RadixAttention(
            self.num_local_heads,
            self.kv_lora_rank + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=1,
            layer_id=layer_id,
            v_head_dim=self.kv_lora_rank,
        )

Ke Bao's avatar
Ke Bao committed
467
468
        self.w_kc = None
        self.w_vc = None
469
        self.w_scale = None
470
471
472
473
474

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
475
        forward_batch: ForwardBatch,
476
477
478
479
480
481
482
483
484
485
486
487
488
489
    ) -> torch.Tensor:
        q_len = hidden_states.shape[0]
        q_input = hidden_states.new_empty(
            q_len, self.num_local_heads, self.kv_lora_rank + self.qk_rope_head_dim
        )
        if self.q_lora_rank is not None:
            q = self.q_a_proj(hidden_states)[0]
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
490
491
492
493
494
495
496
497
498
499
500

        if self.w_kc.dtype == torch.float8_e4m3fn:
            q_nope_val, q_nope_scale = input_to_float8(
                q_nope.transpose(0, 1), torch.float8_e4m3fn
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
        q_input[..., : self.kv_lora_rank] = q_nope_out.transpose(0, 1)
501

Ke Bao's avatar
Ke Bao committed
502
503
504
505
        latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
        v_input = latent_cache[..., : self.kv_lora_rank]
        v_input = self.kv_a_layernorm(v_input.contiguous()).unsqueeze(1)
        k_input = latent_cache.unsqueeze(1)
506
        k_input[..., : self.kv_lora_rank] = v_input
Ke Bao's avatar
Ke Bao committed
507
        k_pe = k_input[..., self.kv_lora_rank :]
508
509
510
511
512

        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q_input[..., self.kv_lora_rank :] = q_pe
        k_input[..., self.kv_lora_rank :] = k_pe

513
        attn_output = self.attn(q_input, k_input, v_input, forward_batch)
514
515
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

516
517
518
519
520
521
522
523
524
525
526
527
528
529
        if self.w_vc.dtype == torch.float8_e4m3fn:
            attn_output_val, attn_output_scale = input_to_float8(
                attn_output.transpose(0, 1), torch.float8_e4m3fn
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
530
531
532
533
534
        output, _ = self.o_proj(attn_output)

        return output


Ke Bao's avatar
Ke Bao committed
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
def all_gather(
    input_tensor: torch.Tensor, forward_batch: ForwardBatch, rank, world_size, group
):
    if world_size == 1:
        return input_tensor

    all_lens = forward_batch.global_num_tokens
    max_len = max(forward_batch.global_num_tokens)

    padded_tensor = torch.nn.functional.pad(
        input_tensor, (0, 0, 0, max_len - input_tensor.shape[0])
    )

    torch.distributed.all_gather_into_tensor(
        forward_batch.gathered_buffer, padded_tensor, group=group
    )

    gathered_tensors = torch.concat(
        [
            forward_batch.gathered_buffer[i * max_len : i * max_len + all_lens[i]]
            for i in range(world_size)
        ]
    )

    start_index = 0 if rank == 0 else sum(all_lens[:rank])
    end_index = start_index + all_lens[rank]

    return gathered_tensors, start_index, end_index


Liangsheng Yin's avatar
Liangsheng Yin committed
565
566
567
568
569
570
class DeepseekV2DecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        layer_id: int,
571
        cache_config=None,
Liangsheng Yin's avatar
Liangsheng Yin committed
572
573
574
575
576
577
578
        quant_config: Optional[QuantizationConfig] = None,
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
Ke Bao's avatar
Ke Bao committed
579
580
581
582
583
584
585
586
        self.enable_dp_attention = (
            not global_server_args_dict["disable_mla"]
            and global_server_args_dict["enable_dp_attention"]
        )
        if self.enable_dp_attention:
            self.tp_rank = get_tensor_model_parallel_rank()
            self.tp_size = get_tensor_model_parallel_world_size()
            self.tp_group = get_tp_group().device_group
Ke Bao's avatar
Ke Bao committed
587
        if not global_server_args_dict["disable_mla"]:
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
            self.self_attn = DeepseekV2AttentionMLA(
                config=config,
                hidden_size=self.hidden_size,
                num_heads=config.num_attention_heads,
                qk_nope_head_dim=config.qk_nope_head_dim,
                qk_rope_head_dim=config.qk_rope_head_dim,
                v_head_dim=config.v_head_dim,
                q_lora_rank=(
                    config.q_lora_rank if hasattr(config, "q_lora_rank") else None
                ),
                kv_lora_rank=config.kv_lora_rank,
                rope_theta=rope_theta,
                rope_scaling=rope_scaling,
                max_position_embeddings=max_position_embeddings,
                cache_config=cache_config,
                quant_config=quant_config,
                layer_id=layer_id,
Ke Bao's avatar
Ke Bao committed
605
                use_dp=self.enable_dp_attention,
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
            )
        else:
            self.self_attn = DeepseekV2Attention(
                config=config,
                hidden_size=self.hidden_size,
                num_heads=config.num_attention_heads,
                qk_nope_head_dim=config.qk_nope_head_dim,
                qk_rope_head_dim=config.qk_rope_head_dim,
                v_head_dim=config.v_head_dim,
                q_lora_rank=(
                    config.q_lora_rank if hasattr(config, "q_lora_rank") else None
                ),
                kv_lora_rank=config.kv_lora_rank,
                rope_theta=rope_theta,
                rope_scaling=rope_scaling,
                max_position_embeddings=max_position_embeddings,
                cache_config=cache_config,
                quant_config=quant_config,
                layer_id=layer_id,
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
        if (
            config.n_routed_experts is not None
            and layer_id >= config.first_k_dense_replace
            and layer_id % config.moe_layer_freq == 0
        ):
            self.mlp = DeepseekV2MoE(config=config, quant_config=quant_config)
        else:
            self.mlp = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=config.intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
            )
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
648
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
649
650
651
        residual: Optional[torch.Tensor],
    ) -> torch.Tensor:
        # Self Attention
Ke Bao's avatar
Ke Bao committed
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
        if not forward_batch.forward_mode.is_idle():
            if residual is None:
                residual = hidden_states
                hidden_states = self.input_layernorm(hidden_states)
            else:
                hidden_states, residual = self.input_layernorm(hidden_states, residual)

            hidden_states = self.self_attn(
                positions=positions,
                hidden_states=hidden_states,
                forward_batch=forward_batch,
            )
            hidden_states, residual = self.post_attention_layernorm(
                hidden_states, residual
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
667
668

        # Fully Connected
Ke Bao's avatar
Ke Bao committed
669
670
671
672
673
674
675
676
677
        if self.enable_dp_attention:
            hidden_states, start_idx, end_idx = all_gather(
                hidden_states, forward_batch, self.tp_rank, self.tp_size, self.tp_group
            )
            hidden_states = self.mlp(hidden_states)
            hidden_states = hidden_states[start_idx:end_idx]
        else:
            hidden_states = self.mlp(hidden_states)

Liangsheng Yin's avatar
Liangsheng Yin committed
678
679
680
681
682
683
684
685
686
687
        return hidden_states, residual


class DeepseekV2Model(nn.Module):

    fall_back_to_pt_during_load = False

    def __init__(
        self,
        config: PretrainedConfig,
688
        cache_config=None,
Liangsheng Yin's avatar
Liangsheng Yin committed
689
690
691
692
693
694
695
696
697
        quant_config: Optional[QuantizationConfig] = None,
    ) -> None:
        super().__init__()
        self.padding_id = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
Ke Bao's avatar
Ke Bao committed
698
            enable_tp=not global_server_args_dict["enable_dp_attention"],
Liangsheng Yin's avatar
Liangsheng Yin committed
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
        )
        self.layers = nn.ModuleList(
            [
                DeepseekV2DecoderLayer(
                    config,
                    layer_id,
                    cache_config=cache_config,
                    quant_config=quant_config,
                )
                for layer_id in range(config.num_hidden_layers)
            ]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
717
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
718
719
720
721
722
723
    ) -> torch.Tensor:
        hidden_states = self.embed_tokens(input_ids)
        residual = None
        for i in range(len(self.layers)):
            layer = self.layers[i]
            hidden_states, residual = layer(
724
                positions, hidden_states, forward_batch, residual
Liangsheng Yin's avatar
Liangsheng Yin committed
725
            )
Ke Bao's avatar
Ke Bao committed
726
727
        if not forward_batch.forward_mode.is_idle():
            hidden_states, _ = self.norm(hidden_states, residual)
Liangsheng Yin's avatar
Liangsheng Yin committed
728
729
730
731
732
733
734
735
        return hidden_states


class DeepseekV2ForCausalLM(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
736
        cache_config=None,
Liangsheng Yin's avatar
Liangsheng Yin committed
737
738
739
740
741
742
        quant_config: Optional[QuantizationConfig] = None,
    ) -> None:
        super().__init__()
        self.config = config
        self.quant_config = quant_config
        self.model = DeepseekV2Model(config, cache_config, quant_config)
Ke Bao's avatar
Ke Bao committed
743
744
745
746
747
748
749
750
751
752
753
754
        if global_server_args_dict["enable_dp_attention"]:
            self.lm_head = ReplicatedLinear(
                config.hidden_size,
                config.vocab_size,
                bias=False,
            )
            self.logits_processor = LogitsProcessor(config, skip_all_gather=True)
        else:
            self.lm_head = ParallelLMHead(
                config.vocab_size, config.hidden_size, quant_config=quant_config
            )
            self.logits_processor = LogitsProcessor(config)
Liangsheng Yin's avatar
Liangsheng Yin committed
755

756
    @torch.no_grad()
Liangsheng Yin's avatar
Liangsheng Yin committed
757
758
759
760
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
761
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
762
    ) -> torch.Tensor:
763
        hidden_states = self.model(input_ids, positions, forward_batch)
Ke Bao's avatar
Ke Bao committed
764
765
        if not forward_batch.forward_mode.is_idle():
            return self.logits_processor(
766
                input_ids, hidden_states, self.lm_head.weight, forward_batch
Ke Bao's avatar
Ke Bao committed
767
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819

    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]

        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
        expert_params_mapping = FusedMoE.make_expert_params_mapping(
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
            num_experts=self.config.n_routed_experts,
        )

        params_dict = dict(self.named_parameters())
        for name, loaded_weight in weights:
            if "rotary_emb.inv_freq" in name:
                continue
            for param_name, weight_name, shard_id in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if ("mlp.experts." in name) and name not in params_dict:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    weight_loader(
                        param,
                        loaded_weight,
820
                        name,
Liangsheng Yin's avatar
Liangsheng Yin committed
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
                        shard_id=shard_id,
                        expert_id=expert_id,
                    )
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue

                    param = params_dict[name]
                    weight_loader = getattr(
                        param, "weight_loader", default_weight_loader
                    )
                    weight_loader(param, loaded_weight)

Ke Bao's avatar
Ke Bao committed
836
        if not global_server_args_dict["disable_mla"]:
Ke Bao's avatar
Ke Bao committed
837
838
839
840
841
            for layer_id in range(self.config.num_hidden_layers):
                self_attn = self.model.layers[layer_id].self_attn
                w_kc, w_vc = self_attn.kv_b_proj.weight.unflatten(
                    0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
                ).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
842
843
844
845
                self_attn.w_kc = w_kc.transpose(1, 2).contiguous().transpose(1, 2)
                self_attn.w_vc = w_vc.contiguous().transpose(1, 2)
                if hasattr(self_attn.kv_b_proj, "weight_scale"):
                    self_attn.w_scale = self_attn.kv_b_proj.weight_scale
Ke Bao's avatar
Ke Bao committed
846
847
                del self_attn.kv_b_proj

Liangsheng Yin's avatar
Liangsheng Yin committed
848
849

EntryClass = DeepseekV2ForCausalLM