test_hidden_states.py 4.34 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import unittest

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

import sglang as sgl
from sglang.test.test_utils import is_in_ci


class TestHiddenState(unittest.TestCase):
    def test_return_hidden_states(self):
        prompts = ["Today is", "Today is a sunny day and I like"]
        model_path = "meta-llama/Meta-Llama-3.1-8B-Instruct"
        tokenizer = AutoTokenizer.from_pretrained(model_path)
        input_ids = tokenizer(prompts).input_ids

17
18
19
20
21
        sampling_params = {
            "temperature": 0,
            "max_new_tokens": 8,
            "return_hidden_states": True,
        }
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

        engine = sgl.Engine(
            model_path=model_path,
            random_seed=42,
            skip_tokenizer_init=True,
        )
        outputs = engine.generate(input_ids=input_ids, sampling_params=sampling_params)
        engine.shutdown()

        for output in outputs:
            self.assertEqual(len(output["meta_info"]["hidden_states"]), 8)
            for hidden_state in output["meta_info"]["hidden_states"]:
                self.assertIsInstance(hidden_state, torch.Tensor)
        # Checks that splicing of the batch was done correctly
        self.assertGreater(
            outputs[1]["meta_info"]["hidden_states"][0].shape[0],
            outputs[0]["meta_info"]["hidden_states"][0].shape[0],
        )

        model = AutoModelForCausalLM.from_pretrained(
            model_path, torch_dtype=torch.bfloat16, device_map="cuda"
        )

        for input_id, output in zip(input_ids, outputs):
            with torch.inference_mode():
                hf_out = model(
                    torch.tensor(
                        [input_id + output["token_ids"][:-1]], device=model.device
                    ),
                    output_hidden_states=True,
                )
            print("=== HF Hiddens ===")
            print(hf_out["hidden_states"][-1][0])
            sg_hidden_states = torch.cat(
                [
                    i.unsqueeze(0) if len(i.shape) == 1 else i
                    for i in output["meta_info"]["hidden_states"]
                ]
            ).to("cuda")
            print("=== SRT Hiddens ===")
            print(sg_hidden_states)

            print(
                f"Max diff: {torch.max(torch.abs(hf_out['hidden_states'][-1][0] - sg_hidden_states))}"
            )

68
            atol = 0.8
69
70
71
72
73
74
75
76
77
            self.assertTrue(
                torch.allclose(
                    hf_out["hidden_states"][-1][0],
                    sg_hidden_states,
                    atol=atol,
                    rtol=0,
                )
            )

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    def test_repeatedly_changes_hidden_states(self):
        prompts = ["Today is", "Today is a sunny day and I like"]
        model_path = "meta-llama/Meta-Llama-3.1-8B-Instruct"
        tokenizer = AutoTokenizer.from_pretrained(model_path)
        input_ids = tokenizer(prompts).input_ids

        sample_completion = {
            "temperature": 0,
            "max_new_tokens": 8,
            "return_hidden_states": True,
        }

        sample_hidden_state = {
            "temperature": 0,
            "max_new_tokens": 8,
            "return_hidden_states": False,
        }

        engine = sgl.Engine(
            model_path=model_path,
            random_seed=42,
            skip_tokenizer_init=True,
        )
        outputs_completion_first_round = engine.generate(
            input_ids=input_ids, sampling_params=sample_completion
        )
        outputs_hidden_state = engine.generate(
            input_ids=input_ids, sampling_params=sample_hidden_state
        )

        outputs_completion_last_round = engine.generate(
            input_ids=input_ids, sampling_params=sample_completion
        )
        engine.shutdown()

        for (
            output_completion_first_round,
            output_hidden_state,
            output_completion_last_round,
        ) in zip(
            outputs_completion_first_round,
            outputs_hidden_state,
            outputs_completion_last_round,
        ):
            self.assertEqual(
                len(output_completion_first_round["meta_info"]["hidden_states"]), 8
            )
            self.assertNotIn("hidden_states", output_hidden_state["meta_info"])
            self.assertEqual(
                len(output_completion_last_round["meta_info"]["hidden_states"]), 8
            )

130
131
132

if __name__ == "__main__":
    unittest.main()