moe_align_kernel.cu 11 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/* Copyright 2025 SGLang Team. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

16
17
18
19
20
21
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>

#include <THC/THCAtomics.cuh>

22
#include "utils.h"
23

24
#define VEC_SIZE 4
25
using Vec = int4;
26

27
template <typename scalar_t>
28
29
30
31
32
__global__ void count_and_sort_expert_tokens_kernel(
    const scalar_t* __restrict__ topk_ids,
    int32_t* __restrict__ sorted_token_ids,
    int32_t* __restrict__ cumsum_buffer,
    size_t numel) {
33
34
  const size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
  const size_t stride = blockDim.x * gridDim.x;
35

36
  for (size_t i = tid; i < numel; i += stride) {
37
    int32_t expert_id = topk_ids[i] + 1;
38
39
    int32_t rank_post_pad = atomicAdd(&cumsum_buffer[expert_id], 1);
    sorted_token_ids[rank_post_pad] = i;
40
41
  }
}
42

43
44
45
46
47
48
49
50
51
52
53
54
#ifdef __CUDA_ARCH__
__device__ __forceinline__ int warp_exclusive_scan(int v, unsigned mask = 0xffffffffu) {
  int original = v;
#pragma unroll
  for (int offset = 1; offset < WARP_SIZE; offset <<= 1) {
    int n = __shfl_up_sync(mask, v, offset);
    if ((threadIdx.x & (WARP_SIZE - 1)) >= offset) v += n;
  }
  return v - original;
}
#endif

55
template <typename scalar_t>
56
57
58
59
60
61
62
63
__global__ void moe_align_block_size_kernel(
    const scalar_t* __restrict__ topk_ids,
    int32_t* __restrict__ sorted_token_ids,
    int32_t* __restrict__ expert_ids,
    int32_t* __restrict__ total_tokens_post_pad,
    int32_t num_experts,
    int32_t block_size,
    size_t numel,
64
    int32_t* __restrict__ cumsum,
65
66
67
68
69
70
71
    bool pad_sorted_token_ids,
    const int32_t scan_size) {
  extern __shared__ int32_t smem[];
  int32_t* shared_counts = smem;                  // [num_experts]
  int32_t* prefix = shared_counts + num_experts;  // [num_experts + 1]
  int32_t* scan_buf = prefix + num_experts + 1;   // [scan_size]
  __shared__ int32_t s_total_tokens_post_pad;
72

73
74
  const size_t tid = threadIdx.x;
  const size_t stride = blockDim.x;
75

76
77
  if (tid < num_experts) {
    shared_counts[tid] = 0;
78
  }
79

80
  __syncthreads();
81

82
  for (size_t i = tid; i < numel; i += stride) {
83
    int expert_id = topk_ids[i] + 1;
84
    atomicAdd(&shared_counts[expert_id], 1);
85
86
87
88
  }

  __syncthreads();

89
90
91
92
93
94
  int32_t padded_count = 0;
  if (tid < num_experts) {
    int32_t count = shared_counts[tid];
    padded_count = (count + block_size - 1) / block_size * block_size;
    scan_buf[tid] = padded_count;
  }
95

96
97
#ifndef __CUDA_ARCH__  // HIP

98
99
100
101
  if (tid >= num_experts && tid < scan_size) {
    scan_buf[tid] = 0;
  }

102
103
  __syncthreads();

104
105
106
107
108
109
110
111
112
113
114
  // Blelloch scan
  int offset = 1;
#pragma unroll
  for (int d = scan_size >> 1; d > 0; d >>= 1) {
    if (tid < d) {
      int ai = offset * (2 * tid + 1) - 1;
      int bi = offset * (2 * tid + 2) - 1;
      scan_buf[bi] += scan_buf[ai];
    }
    offset <<= 1;
    __syncthreads();
115
  }
116

117
  // down-sweep
118
  if (tid == 0) {
119
120
    prefix[num_experts] = scan_buf[scan_size - 1];
    scan_buf[scan_size - 1] = 0;
121
122
  }
  __syncthreads();
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
#pragma unroll
  for (int d = 1; d < scan_size; d <<= 1) {
    offset >>= 1;
    if (tid < d) {
      int ai = offset * (2 * tid + 1) - 1;
      int bi = offset * (2 * tid + 2) - 1;
      if (bi < scan_size) {
        int temp = scan_buf[ai];
        scan_buf[ai] = scan_buf[bi];
        scan_buf[bi] += temp;
      }
    }
    __syncthreads();
  }
138

139
140
141
  if (tid < num_experts) {
    prefix[tid] = scan_buf[tid];
  }
142

143
144
145
  if (tid == 0) {
    s_total_tokens_post_pad = prefix[num_experts];
    *total_tokens_post_pad = s_total_tokens_post_pad;
146
  }
147
  __syncthreads();
148

149
150
151
152
153
154
155
156
157
#else  // CUDA

  // Intra warp prefix sum
  int32_t* warp_sums = scan_buf + scan_size;  // [<= 32]
  const int warp_id = tid / WARP_SIZE;
  const int lane_id = tid & (WARP_SIZE - 1);
  const int num_warps_for_scan = (scan_size + WARP_SIZE - 1) / WARP_SIZE;
  const int warp_sum = warp_exclusive_scan(padded_count) + padded_count;
  if (lane_id == WARP_SIZE - 1) warp_sums[warp_id] = warp_sum;
158
159
  __syncthreads();

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
  // warp0 accumulate all the block's prefix sum
  if (tid < WARP_SIZE) {
    int val = (tid < num_warps_for_scan) ? warp_sums[tid] : 0;
    int incl = warp_exclusive_scan(val) + val;
    warp_sums[tid] = incl;
  }
  __syncthreads();

  // Every thread obtains the whole block's sum
  if (tid == 0) {
    prefix[num_experts] = warp_sums[num_warps_for_scan - 1];
    s_total_tokens_post_pad = prefix[num_experts];
    *total_tokens_post_pad = s_total_tokens_post_pad;
  }
  __syncthreads();

  // Fill 0 to scan_buf extended area (tid >= num_expert)
  if (tid >= num_experts && tid < scan_size) scan_buf[tid] = 0;
  __syncthreads();

  // Perform 2 level exclusive-prefix-sum to scan_buf
  int v = (tid < scan_size) ? scan_buf[tid] : 0;
  int pre = warp_exclusive_scan(v);
  if (lane_id == WARP_SIZE - 1) warp_sums[warp_id] = pre + v;
  __syncthreads();

  if (warp_id == 0) {
    int val = (lane_id < num_warps_for_scan) ? warp_sums[lane_id] : 0;
    warp_sums[lane_id] = warp_exclusive_scan(val);
  }
  __syncthreads();

  int offset = warp_sums[warp_id];
  if (tid < scan_size) scan_buf[tid] = pre + offset;
  __syncthreads();

  // Write prefix[0..num_experts - 1] and cumsum
  if (tid < num_experts) prefix[tid] = scan_buf[tid];
#endif

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
  if (tid <= num_experts) {
    cumsum[tid] = prefix[tid];
  }
  // fill expert_ids
  const int32_t num_blocks = s_total_tokens_post_pad / block_size;
  for (int32_t i = tid; i < num_blocks; i += stride) {
    int32_t block_start = i * block_size;
    int left = 0, right = num_experts;
    while (left < right) {
      int mid = (left + right) >> 1;
      if (prefix[mid] <= block_start) {
        left = mid + 1;
      } else {
        right = mid;
      }
    }
216
    expert_ids[i] = left - 2;
217
218
219
220
221
222
223
224
225
  }

  if (pad_sorted_token_ids) {
    Vec fill_vec;
    fill_vec.x = fill_vec.y = fill_vec.z = fill_vec.w = numel;
    int32_t total_vecs = (s_total_tokens_post_pad + VEC_SIZE - 1) / VEC_SIZE;
    Vec* out_ptr = reinterpret_cast<Vec*>(sorted_token_ids);
    for (int32_t i = tid; i < total_vecs; i += stride) {
      out_ptr[i] = fill_vec;
226
227
    }
  }
228
229
}

230
231
232
233
234
235
236
237
template <typename scalar_t>
__global__ void moe_align_block_size_small_batch_expert_kernel(
    const scalar_t* __restrict__ topk_ids,
    int32_t* __restrict__ sorted_token_ids,
    int32_t* __restrict__ expert_ids,
    int32_t* __restrict__ total_tokens_post_pad,
    int32_t num_experts,
    int32_t block_size,
238
239
    size_t numel,
    bool pad_sorted_token_ids) {
240
241
242
243
244
245
246
247
248
249
250
251
  const size_t tid = threadIdx.x;
  const size_t stride = blockDim.x;

  extern __shared__ int32_t shared_mem[];
  int32_t* cumsum = shared_mem;
  int32_t* tokens_cnts = (int32_t*)(shared_mem + num_experts + 1);

  for (int i = 0; i < num_experts; ++i) {
    tokens_cnts[(threadIdx.x + 1) * num_experts + i] = 0;
  }

  for (size_t i = tid; i < numel; i += stride) {
252
    ++tokens_cnts[(threadIdx.x + 1) * num_experts + topk_ids[i] + 1];
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
  }

  __syncthreads();

  if (threadIdx.x < num_experts) {
    tokens_cnts[threadIdx.x] = 0;
    for (int i = 1; i <= blockDim.x; ++i) {
      tokens_cnts[i * num_experts + threadIdx.x] += tokens_cnts[(i - 1) * num_experts + threadIdx.x];
    }
  }

  __syncthreads();

  if (threadIdx.x == 0) {
    cumsum[0] = 0;
    for (int i = 1; i <= num_experts; ++i) {
      cumsum[i] = cumsum[i - 1] + CEILDIV(tokens_cnts[blockDim.x * num_experts + i - 1], block_size) * block_size;
    }
    *total_tokens_post_pad = static_cast<int32_t>(cumsum[num_experts]);
  }

  __syncthreads();

  if (threadIdx.x < num_experts) {
    for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1]; i += block_size) {
278
      expert_ids[i / block_size] = threadIdx.x - 1;
279
280
281
    }
  }

282
283
  if (pad_sorted_token_ids) {
    Vec fill_vec;
284
285
    fill_vec.x = fill_vec.y = fill_vec.z = fill_vec.w = numel;
    int32_t total_vecs = (*total_tokens_post_pad + VEC_SIZE - 1) / VEC_SIZE;
286
    Vec* out_ptr = reinterpret_cast<Vec*>(sorted_token_ids);
287
288
    for (int32_t i = tid; i < total_vecs; i += stride) {
      out_ptr[i] = fill_vec;
289
290
291
292
293
    }
  }

  __syncthreads();

294
  for (size_t i = tid; i < numel; i += stride) {
295
    int32_t expert_id = topk_ids[i] + 1;
296
297
298
299
300
301
    int32_t rank_post_pad = tokens_cnts[threadIdx.x * num_experts + expert_id] + cumsum[expert_id];
    sorted_token_ids[rank_post_pad] = i;
    ++tokens_cnts[threadIdx.x * num_experts + expert_id];
  }
}

302
303
304
305
306
307
308
void moe_align_block_size(
    torch::Tensor topk_ids,
    int64_t num_experts,
    int64_t block_size,
    torch::Tensor sorted_token_ids,
    torch::Tensor experts_ids,
    torch::Tensor num_tokens_post_pad,
309
310
    torch::Tensor cumsum_buffer,
    bool pad_sorted_token_ids) {
311
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
312

313
  int threads = 1024;
314
315
316

  threads = ((threads + WARP_SIZE - 1) / WARP_SIZE) * WARP_SIZE;

317
  DISPATCH_INTEGRAL_TYPES(topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    bool small_batch_expert_mode = (topk_ids.numel() < 1024) && (num_experts <= 64);

    if (small_batch_expert_mode) {
      const int32_t threads = max((int32_t)num_experts, WARP_SIZE);
      const int32_t shared_mem_size = ((threads + 1) * num_experts + (num_experts + 1)) * sizeof(int32_t);

      auto small_batch_expert_kernel = moe_align_block_size_small_batch_expert_kernel<scalar_t>;
      small_batch_expert_kernel<<<1, threads, shared_mem_size, stream>>>(
          topk_ids.data_ptr<scalar_t>(),
          sorted_token_ids.data_ptr<int32_t>(),
          experts_ids.data_ptr<int32_t>(),
          num_tokens_post_pad.data_ptr<int32_t>(),
          num_experts,
          block_size,
332
333
          topk_ids.numel(),
          pad_sorted_token_ids);
334
335
336
    } else {
      auto align_kernel = moe_align_block_size_kernel<scalar_t>;

337
      const size_t scan_size = next_pow2(num_experts);
338
      const size_t shared_mem_size = (num_experts + (num_experts + 1) + scan_size + WARP_SIZE) * sizeof(int32_t);
339
340
341
342
343
344
345
346
      align_kernel<<<1, threads, shared_mem_size, stream>>>(
          topk_ids.data_ptr<scalar_t>(),
          sorted_token_ids.data_ptr<int32_t>(),
          experts_ids.data_ptr<int32_t>(),
          num_tokens_post_pad.data_ptr<int32_t>(),
          num_experts,
          block_size,
          topk_ids.numel(),
347
          cumsum_buffer.data_ptr<int32_t>(),
348
349
          pad_sorted_token_ids,
          scan_size);
350
351
352
353
354
355
356
357
358
359
360
361
362

      const int block_threads = std::min(256, (int)threads);
      const int num_blocks = (topk_ids.numel() + block_threads - 1) / block_threads;
      const int max_blocks = 65535;
      const int actual_blocks = std::min(num_blocks, max_blocks);

      auto sort_kernel = count_and_sort_expert_tokens_kernel<scalar_t>;
      sort_kernel<<<actual_blocks, block_threads, 0, stream>>>(
          topk_ids.data_ptr<scalar_t>(),
          sorted_token_ids.data_ptr<int32_t>(),
          cumsum_buffer.data_ptr<int32_t>(),
          topk_ids.numel());
    }
363
364
  });
}