amd_gpu.md 5.53 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# AMD GPUs

This document describes how run SGLang on AMD GPUs. If you encounter issues or have questions, please [open an issue](https://github.com/sgl-project/sglang/issues).

## System Configuration

When using AMD GPUs (such as MI300X), certain system-level optimizations help ensure stable performance. Here we take MI300X as an example. AMD provides official documentation for MI300X optimization and system tuning:

- [AMD MI300X Tuning Guides](https://rocm.docs.amd.com/en/latest/how-to/tuning-guides/mi300x/index.html)
- [LLM inference performance validation on AMD Instinct MI300X](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/inference/vllm-benchmark.html)
- [AMD Instinct MI300X System Optimization](https://rocm.docs.amd.com/en/latest/how-to/system-optimization/mi300x.html)
- [AMD Instinct MI300X Workload Optimization](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/inference-optimization/workload.html)
- [Supercharge DeepSeek-R1 Inference on AMD Instinct MI300X](https://rocm.blogs.amd.com/artificial-intelligence/DeepSeekR1-Part2/README.html)

**NOTE:** We strongly recommend reading these docs and guides entirely to fully utilize your system.

Below are a few key settings to confirm or enable for SGLang:

### Update GRUB Settings

In `/etc/default/grub`, append the following to `GRUB_CMDLINE_LINUX`:

```text
pci=realloc=off iommu=pt
```

Afterward, run `sudo update-grub` (or your distro’s equivalent) and reboot.

### Disable NUMA Auto-Balancing

```bash
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
```

You can automate or verify this change using [this helpful script](https://github.com/ROCm/triton/blob/rocm_env/scripts/amd/env_check.sh).

Again, please go through the entire documentation to confirm your system is using the recommended configuration.

## Install SGLang

You can install SGLang using one of the methods below.

### Install from Source

```bash
# Use the last release branch
git clone -b v0.5.2 https://github.com/sgl-project/sglang.git
cd sglang

# Compile sgl-kernel
pip install --upgrade pip
cd sgl-kernel
python setup_rocm.py install

# Install sglang python package
cd ..
pip install -e "python[all_hip]"
```

### Install Using Docker (Recommended)

The docker images are available on Docker Hub at [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile.rocm](https://github.com/sgl-project/sglang/tree/main/docker).

The steps below show how to build and use an image.

1. Build the docker image.
   If you use pre-built images, you can skip this step and replace `sglang_image` with the pre-built image names in the steps below.

   ```bash
   docker build -t sglang_image -f Dockerfile.rocm .
   ```

2. Create a convenient alias.

   ```bash
   alias drun='docker run -it --rm --network=host --privileged --device=/dev/kfd --device=/dev/dri \
       --ipc=host --shm-size 16G --group-add video --cap-add=SYS_PTRACE \
       --security-opt seccomp=unconfined \
       -v $HOME/dockerx:/dockerx \
       -v /data:/data'
   ```

   If you are using RDMA, please note that:
     - `--network host` and `--privileged` are required by RDMA. If you don't need RDMA, you can remove them.
     - You may need to set `NCCL_IB_GID_INDEX` if you are using RoCE, for example: `export NCCL_IB_GID_INDEX=3`.

3. Launch the server.

   **NOTE:** Replace `<secret>` below with your [huggingface hub token](https://huggingface.co/docs/hub/en/security-tokens).

   ```bash
   drun -p 30000:30000 \
       -v ~/.cache/huggingface:/root/.cache/huggingface \
       --env "HF_TOKEN=<secret>" \
       sglang_image \
       python3 -m sglang.launch_server \
       --model-path NousResearch/Meta-Llama-3.1-8B \
       --host 0.0.0.0 \
       --port 30000
   ```

4. To verify the utility, you can run a benchmark in another terminal or refer to [other docs](https://docs.sglang.ai/backend/openai_api_completions.html) to send requests to the engine.

   ```bash
   drun sglang_image \
       python3 -m sglang.bench_serving \
       --backend sglang \
       --dataset-name random \
       --num-prompts 4000 \
       --random-input 128 \
       --random-output 128
   ```

With your AMD system properly configured and SGLang installed, you can now fully leverage AMD hardware to power SGLang’s machine learning capabilities.

## Examples

### Running DeepSeek-V3

The only difference when running DeepSeek-V3 is in how you start the server. Here's an example command:

```bash
drun -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    --ipc=host \
    --env "HF_TOKEN=<secret>" \
    sglang_image \
    python3 -m sglang.launch_server \
    --model-path deepseek-ai/DeepSeek-V3 \ # <- here
    --tp 8 \
    --trust-remote-code \
    --host 0.0.0.0 \
    --port 30000
```

[Running DeepSeek-R1 on a single NDv5 MI300X VM](https://techcommunity.microsoft.com/blog/azurehighperformancecomputingblog/running-deepseek-r1-on-a-single-ndv5-mi300x-vm/4372726) could also be a good reference.

### Running Llama3.1

Running Llama3.1 is nearly identical to running DeepSeek-V3. The only difference is in the model specified when starting the server, shown by the following example command:

```bash
drun -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    --ipc=host \
    --env "HF_TOKEN=<secret>" \
    sglang_image \
    python3 -m sglang.launch_server \
    --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \ # <- here
    --tp 8 \
    --trust-remote-code \
    --host 0.0.0.0 \
    --port 30000
```

### Warmup Step

When the server displays `The server is fired up and ready to roll!`, it means the startup is successful.