openai_api_embeddings.ipynb 5.23 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# OpenAI APIs - Embedding\n",
    "\n",
    "SGLang provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models.\n",
    "A complete reference for the API is available in the [OpenAI API Reference](https://platform.openai.com/docs/guides/embeddings).\n",
    "\n",
    "This tutorial covers the embedding APIs for embedding models. For a list of the supported models see the [corresponding overview page](../supported_models/embedding_models.md)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Launch A Server\n",
    "\n",
    "Launch the server in your terminal and wait for it to initialize. Remember to add `--is-embedding` to the command."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sglang.test.doc_patch import launch_server_cmd\n",
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
    "\n",
    "embedding_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "python3 -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-1.5B-instruct \\\n",
    "    --host 0.0.0.0 --is-embedding --log-level warning\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Using cURL"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import subprocess, json\n",
    "\n",
    "text = \"Once upon a time\"\n",
    "\n",
    "curl_text = f\"\"\"curl -s http://localhost:{port}/v1/embeddings \\\n",
    "  -H \"Content-Type: application/json\" \\\n",
    "  -d '{{\"model\": \"Alibaba-NLP/gte-Qwen2-1.5B-instruct\", \"input\": \"{text}\"}}'\"\"\"\n",
    "\n",
    "result = subprocess.check_output(curl_text, shell=True)\n",
    "\n",
    "print(result)\n",
    "\n",
    "text_embedding = json.loads(result)[\"data\"][0][\"embedding\"]\n",
    "\n",
    "print_highlight(f\"Text embedding (first 10): {text_embedding[:10]}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Using Python Requests"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import requests\n",
    "\n",
    "text = \"Once upon a time\"\n",
    "\n",
    "response = requests.post(\n",
    "    f\"http://localhost:{port}/v1/embeddings\",\n",
    "    json={\"model\": \"Alibaba-NLP/gte-Qwen2-1.5B-instruct\", \"input\": text},\n",
    ")\n",
    "\n",
    "text_embedding = response.json()[\"data\"][0][\"embedding\"]\n",
    "\n",
    "print_highlight(f\"Text embedding (first 10): {text_embedding[:10]}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Using OpenAI Python Client"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import openai\n",
    "\n",
    "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
    "\n",
    "# Text embedding example\n",
    "response = client.embeddings.create(\n",
    "    model=\"Alibaba-NLP/gte-Qwen2-1.5B-instruct\",\n",
    "    input=text,\n",
    ")\n",
    "\n",
    "embedding = response.data[0].embedding[:10]\n",
    "print_highlight(f\"Text embedding (first 10): {embedding}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Using Input IDs\n",
    "\n",
    "SGLang also supports `input_ids` as input to get the embedding."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import json\n",
    "import os\n",
    "from transformers import AutoTokenizer\n",
    "\n",
    "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"Alibaba-NLP/gte-Qwen2-1.5B-instruct\")\n",
    "input_ids = tokenizer.encode(text)\n",
    "\n",
    "curl_ids = f\"\"\"curl -s http://localhost:{port}/v1/embeddings \\\n",
    "  -H \"Content-Type: application/json\" \\\n",
    "  -d '{{\"model\": \"Alibaba-NLP/gte-Qwen2-1.5B-instruct\", \"input\": {json.dumps(input_ids)}}}'\"\"\"\n",
    "\n",
    "input_ids_embedding = json.loads(subprocess.check_output(curl_ids, shell=True))[\"data\"][\n",
    "    0\n",
    "][\"embedding\"]\n",
    "\n",
    "print_highlight(f\"Input IDs embedding (first 10): {input_ids_embedding[:10]}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(embedding_process)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Multi-Modal Embedding Model\n",
    "Please refer to [Multi-Modal Embedding Model](../supported_models/embedding_models.md)"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}