native_api.ipynb 15.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# SGLang Native APIs\n",
    "\n",
    "Apart from the OpenAI compatible APIs, the SGLang Runtime also provides its native server APIs. We introduce the following APIs:\n",
    "\n",
    "- `/generate` (text generation model)\n",
    "- `/get_model_info`\n",
    "- `/get_server_info`\n",
    "- `/health`\n",
    "- `/health_generate`\n",
    "- `/flush_cache`\n",
    "- `/update_weights`\n",
    "- `/encode`(embedding model)\n",
    "- `/v1/rerank`(cross encoder rerank model)\n",
    "- `/classify`(reward model)\n",
    "- `/start_expert_distribution_record`\n",
    "- `/stop_expert_distribution_record`\n",
    "- `/dump_expert_distribution_record`\n",
    "- A full list of these APIs can be found at [http_server.py](https://github.com/sgl-project/sglang/blob/main/python/sglang/srt/entrypoints/http_server.py)\n",
    "\n",
    "We mainly use `requests` to test these APIs in the following examples. You can also use `curl`.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Launch A Server"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sglang.test.doc_patch import launch_server_cmd\n",
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
    "\n",
    "server_process, port = launch_server_cmd(\n",
    "    \"python3 -m sglang.launch_server --model-path qwen/qwen2.5-0.5b-instruct --host 0.0.0.0 --log-level warning\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Generate (text generation model)\n",
    "Generate completions. This is similar to the `/v1/completions` in OpenAI API. Detailed parameters can be found in the [sampling parameters](sampling_params.md)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import requests\n",
    "\n",
    "url = f\"http://localhost:{port}/generate\"\n",
    "data = {\"text\": \"What is the capital of France?\"}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.json())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Get Model Info\n",
    "\n",
    "Get the information of the model.\n",
    "\n",
    "- `model_path`: The path/name of the model.\n",
    "- `is_generation`: Whether the model is used as generation model or embedding model.\n",
    "- `tokenizer_path`: The path/name of the tokenizer.\n",
    "- `preferred_sampling_params`: The default sampling params specified via `--preferred-sampling-params`. `None` is returned in this example as we did not explicitly configure it in server args.\n",
    "- `weight_version`: This field contains the version of the model weights. This is often used to track changes or updates to the model’s trained parameters."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "url = f\"http://localhost:{port}/get_model_info\"\n",
    "\n",
    "response = requests.get(url)\n",
    "response_json = response.json()\n",
    "print_highlight(response_json)\n",
    "assert response_json[\"model_path\"] == \"qwen/qwen2.5-0.5b-instruct\"\n",
    "assert response_json[\"is_generation\"] is True\n",
    "assert response_json[\"tokenizer_path\"] == \"qwen/qwen2.5-0.5b-instruct\"\n",
    "assert response_json[\"preferred_sampling_params\"] is None\n",
    "assert response_json.keys() == {\n",
    "    \"model_path\",\n",
    "    \"is_generation\",\n",
    "    \"tokenizer_path\",\n",
    "    \"preferred_sampling_params\",\n",
    "    \"weight_version\",\n",
    "}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Get Server Info\n",
    "Gets the server information including CLI arguments, token limits, and memory pool sizes.\n",
    "- Note: `get_server_info` merges the following deprecated endpoints:\n",
    "  - `get_server_args`\n",
    "  - `get_memory_pool_size` \n",
    "  - `get_max_total_num_tokens`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "url = f\"http://localhost:{port}/get_server_info\"\n",
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Health Check\n",
    "- `/health`: Check the health of the server.\n",
    "- `/health_generate`: Check the health of the server by generating one token."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "url = f\"http://localhost:{port}/health_generate\"\n",
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "url = f\"http://localhost:{port}/health\"\n",
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Flush Cache\n",
    "\n",
    "Flush the radix cache. It will be automatically triggered when the model weights are updated by the `/update_weights` API."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "url = f\"http://localhost:{port}/flush_cache\"\n",
    "\n",
    "response = requests.post(url)\n",
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Update Weights From Disk\n",
    "\n",
    "Update model weights from disk without restarting the server. Only applicable for models with the same architecture and parameter size.\n",
    "\n",
    "SGLang support `update_weights_from_disk` API for continuous evaluation during training (save checkpoint to disk and update weights from disk).\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# successful update with same architecture and size\n",
    "\n",
    "url = f\"http://localhost:{port}/update_weights_from_disk\"\n",
    "data = {\"model_path\": \"qwen/qwen2.5-0.5b-instruct\"}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.text)\n",
    "assert response.json()[\"success\"] is True\n",
    "assert response.json()[\"message\"] == \"Succeeded to update model weights.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# failed update with different parameter size or wrong name\n",
    "\n",
    "url = f\"http://localhost:{port}/update_weights_from_disk\"\n",
    "data = {\"model_path\": \"qwen/qwen2.5-0.5b-instruct-wrong\"}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "print_highlight(response_json)\n",
    "assert response_json[\"success\"] is False\n",
    "assert response_json[\"message\"] == (\n",
    "    \"Failed to get weights iterator: \"\n",
    "    \"qwen/qwen2.5-0.5b-instruct-wrong\"\n",
    "    \" (repository not found).\"\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Encode (embedding model)\n",
    "\n",
    "Encode text into embeddings. Note that this API is only available for [embedding models](openai_api_embeddings.ipynb) and will raise an error for generation models.\n",
    "Therefore, we launch a new server to server an embedding model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "embedding_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "python3 -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-1.5B-instruct \\\n",
    "    --host 0.0.0.0 --is-embedding --log-level warning\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# successful encode for embedding model\n",
    "\n",
    "url = f\"http://localhost:{port}/encode\"\n",
    "data = {\"model\": \"Alibaba-NLP/gte-Qwen2-1.5B-instruct\", \"text\": \"Once upon a time\"}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "print_highlight(f\"Text embedding (first 10): {response_json['embedding'][:10]}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(embedding_process)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## v1/rerank (cross encoder rerank model)\n",
    "Rerank a list of documents given a query using a cross-encoder model. Note that this API is only available for cross encoder model like [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) with `attention-backend` `triton` and `torch_native`.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "reranker_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "python3 -m sglang.launch_server --model-path BAAI/bge-reranker-v2-m3 \\\n",
    "    --host 0.0.0.0 --disable-radix-cache --chunked-prefill-size -1 --attention-backend triton --is-embedding --log-level warning\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# compute rerank scores for query and documents\n",
    "\n",
    "url = f\"http://localhost:{port}/v1/rerank\"\n",
    "data = {\n",
    "    \"model\": \"BAAI/bge-reranker-v2-m3\",\n",
    "    \"query\": \"what is panda?\",\n",
    "    \"documents\": [\n",
    "        \"hi\",\n",
    "        \"The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.\",\n",
    "    ],\n",
    "}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "for item in response_json:\n",
    "    print_highlight(f\"Score: {item['score']:.2f} - Document: '{item['document']}'\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(reranker_process)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Classify (reward model)\n",
    "\n",
    "SGLang Runtime also supports reward models. Here we use a reward model to classify the quality of pairwise generations."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Note that SGLang now treats embedding models and reward models as the same type of models.\n",
    "# This will be updated in the future.\n",
    "\n",
    "reward_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "python3 -m sglang.launch_server --model-path Skywork/Skywork-Reward-Llama-3.1-8B-v0.2 --host 0.0.0.0 --is-embedding --log-level warning\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoTokenizer\n",
    "\n",
    "PROMPT = (\n",
    "    \"What is the range of the numeric output of a sigmoid node in a neural network?\"\n",
    ")\n",
    "\n",
    "RESPONSE1 = \"The output of a sigmoid node is bounded between -1 and 1.\"\n",
    "RESPONSE2 = \"The output of a sigmoid node is bounded between 0 and 1.\"\n",
    "\n",
    "CONVS = [\n",
    "    [{\"role\": \"user\", \"content\": PROMPT}, {\"role\": \"assistant\", \"content\": RESPONSE1}],\n",
    "    [{\"role\": \"user\", \"content\": PROMPT}, {\"role\": \"assistant\", \"content\": RESPONSE2}],\n",
    "]\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"Skywork/Skywork-Reward-Llama-3.1-8B-v0.2\")\n",
    "prompts = tokenizer.apply_chat_template(CONVS, tokenize=False)\n",
    "\n",
    "url = f\"http://localhost:{port}/classify\"\n",
    "data = {\"model\": \"Skywork/Skywork-Reward-Llama-3.1-8B-v0.2\", \"text\": prompts}\n",
    "\n",
    "responses = requests.post(url, json=data).json()\n",
    "for response in responses:\n",
    "    print_highlight(f\"reward: {response['embedding'][0]}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(reward_process)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Capture expert selection distribution in MoE models\n",
    "\n",
    "SGLang Runtime supports recording the number of times an expert is selected in a MoE model run for each expert in the model. This is useful when analyzing the throughput of the model and plan for optimization.\n",
    "\n",
    "*Note: We only print out the first 10 lines of the csv below for better readability. Please adjust accordingly if you want to analyze the results more deeply.*"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "expert_record_server_process, port = launch_server_cmd(\n",
    "    \"python3 -m sglang.launch_server --model-path Qwen/Qwen1.5-MoE-A2.7B --host 0.0.0.0 --expert-distribution-recorder-mode stat --log-level warning\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "response = requests.post(f\"http://localhost:{port}/start_expert_distribution_record\")\n",
    "print_highlight(response)\n",
    "\n",
    "url = f\"http://localhost:{port}/generate\"\n",
    "data = {\"text\": \"What is the capital of France?\"}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.json())\n",
    "\n",
    "response = requests.post(f\"http://localhost:{port}/stop_expert_distribution_record\")\n",
    "print_highlight(response)\n",
    "\n",
    "response = requests.post(f\"http://localhost:{port}/dump_expert_distribution_record\")\n",
    "print_highlight(response)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(expert_record_server_process)"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}