speculative_decoding.ipynb 13.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Speculative Decoding\n",
    "\n",
    "SGLang now provides an EAGLE-based (EAGLE-2/EAGLE-3) speculative decoding option. Our implementation aims to maximize speed and efficiency and is considered to be among the fastest in open-source LLM engines.\n",
    "\n",
    "### Performance Highlights\n",
    "\n",
    "Please see below for the huge improvements on throughput for LLaMA-Instruct 3.1 8B tested on MT bench that can be achieved via EAGLE3 decoding.\n",
    "For further details please see the [EAGLE3 paper](https://arxiv.org/pdf/2503.01840).\n",
    "\n",
    "| Method | Throughput (tokens/s) |\n",
    "|--------|----------------|\n",
    "| SGLang (w/o speculative, 1x H100) | 158.34 tokens/s |\n",
    "| SGLang + EAGLE-2 (1x H100) | 244.10 tokens/s |\n",
    "| SGLang + EAGLE-3 (1x H100) | 373.25 tokens/s |"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## EAGLE Decoding\n",
    "\n",
    "To enable EAGLE speculative decoding the following parameters are relevant:\n",
    "* `speculative_draft_model_path`: Specifies draft model. This parameter is required.\n",
    "* `speculative_num_steps`: Depth of autoregressive drafting. Increases speculation range but risks rejection cascades. Default is 5.\n",
    "* `speculative_eagle_topk`: Branching factor per step. Improves candidate diversity, will lead to higher acceptance rate, but more lead to higher memory/compute consumption. Default is 4.\n",
    "* `speculative_num_draft_tokens`: Maximum parallel verification capacity. Allows deeper tree evaluation but will lead to higher GPU memory usage. Default is 8.\n",
    "\n",
    "These parameters are the same for EAGLE-2 and EAGLE-3.\n",
    "\n",
    "You can find the best combinations of these parameters with [bench_speculative.py](https://github.com/sgl-project/sglang/blob/main/scripts/playground/bench_speculative.py).\n",
    "\n",
    "In the documentation below, we set `--cuda-graph-max-bs` to be a small value for faster engine startup. For your own workloads, please tune the above parameters together with `--cuda-graph-max-bs`, `--max-running-requests`, `--mem-fraction-static` for the best performance. "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### EAGLE-2 decoding\n",
    "\n",
    "You can enable EAGLE-2 decoding by setting `--speculative-algorithm EAGLE` and choosing an appropriate model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sglang.test.doc_patch import launch_server_cmd\n",
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
    "\n",
    "import openai"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "server_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "python3 -m sglang.launch_server --model meta-llama/Llama-2-7b-chat-hf  --speculative-algorithm EAGLE \\\n",
    "    --speculative-draft-model-path lmsys/sglang-EAGLE-llama2-chat-7B --speculative-num-steps 3 \\\n",
    "    --speculative-eagle-topk 4 --speculative-num-draft-tokens 16 --cuda-graph-max-bs 8 --log-level warning\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Llama-2-7b-chat-hf\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
    "\n",
    "print_highlight(f\"Response: {response}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### EAGLE-2 Decoding with `torch.compile`\n",
    "\n",
    "You can also enable `torch.compile` for further optimizations and optionally set `--torch-compile-max-bs`:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "server_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "python3 -m sglang.launch_server --model meta-llama/Llama-2-7b-chat-hf  --speculative-algorithm EAGLE \\\n",
    "    --speculative-draft-model-path lmsys/sglang-EAGLE-llama2-chat-7B --speculative-num-steps 5 \\\n",
    "        --speculative-eagle-topk 8 --speculative-num-draft-tokens 64 --mem-fraction 0.6 \\\n",
    "            --enable-torch-compile --torch-compile-max-bs 2 --log-level warning\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Llama-2-7b-chat-hf\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
    "\n",
    "print_highlight(f\"Response: {response}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### EAGLE-2 Decoding via Frequency-Ranked Speculative Sampling\n",
    "\n",
    "By employing a truncated high-frequency token vocabulary in the draft model, Eagle speculative decoding reduces `lm_head` computational overhead while accelerating the pipeline without quality degradation. For more details, checkout [the paper](https://arxiv.org/pdf/arXiv:2502.14856).\n",
    "\n",
    "In our implementation, set `--speculative-token-map` to enable the optimization. You can get the high-frequency token in FR-Spec from [this model](https://huggingface.co/thunlp/LLaMA3-Instruct-8B-FR-Spec). Or you can obtain high-frequency token by directly downloading these token from [this repo](https://github.com/thunlp/FR-Spec/tree/main?tab=readme-ov-file#prepare-fr-spec-vocabulary-subset).\n",
    "\n",
    "Thanks for the contribution from [Weilin Zhao](https://github.com/Achazwl) and [Zhousx](https://github.com/Zhou-sx). "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "server_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "python3 -m sglang.launch_server --model meta-llama/Meta-Llama-3-8B-Instruct --speculative-algorithm EAGLE \\\n",
    "    --speculative-draft-model-path lmsys/sglang-EAGLE-LLaMA3-Instruct-8B --speculative-num-steps 5 \\\n",
    "    --speculative-eagle-topk 8 --speculative-num-draft-tokens 64 --speculative-token-map thunlp/LLaMA3-Instruct-8B-FR-Spec/freq_32768.pt \\\n",
    "    --mem-fraction 0.7 --cuda-graph-max-bs 2 --dtype float16  --log-level warning\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
    "\n",
    "print_highlight(f\"Response: {response}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### EAGLE-3 Decoding\n",
    "\n",
    "You can enable EAGLE-3 decoding by setting `--speculative-algorithm EAGLE3` and choosing an appropriate model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "server_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "python3 -m sglang.launch_server --model meta-llama/Llama-3.1-8B-Instruct  --speculative-algorithm EAGLE3 \\\n",
    "    --speculative-draft-model-path jamesliu1/sglang-EAGLE3-Llama-3.1-Instruct-8B --speculative-num-steps 5 \\\n",
    "        --speculative-eagle-topk 8 --speculative-num-draft-tokens 32 --mem-fraction 0.6 \\\n",
    "        --cuda-graph-max-bs 2 --dtype float16 --log-level warning\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
    "\n",
    "print_highlight(f\"Response: {response}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Multi Token Prediction\n",
    "\n",
    "We support [MTP(Multi-Token Prediction)](https://arxiv.org/pdf/2404.19737) in SGLang by using speculative decoding. We use Xiaomi/MiMo-7B-RL model as example here (deepseek mtp usage refer to [deepseek doc](../basic_usage/deepseek.md#multi-token-prediction))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "server_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "    python3 -m sglang.launch_server --model-path XiaomiMiMo/MiMo-7B-RL --host 0.0.0.0 --trust-remote-code \\\n",
    "    --speculative-algorithm EAGLE --speculative-num-steps 1 --speculative-eagle-topk 1 --speculative-num-draft-tokens 2 \\\n",
    "    --mem-fraction 0.5 --log-level warning\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import requests\n",
    "\n",
    "url = f\"http://localhost:{port}/v1/chat/completions\"\n",
    "\n",
    "data = {\n",
    "    \"model\": \"XiaomiMiMo/MiMo-7B-RL\",\n",
    "    \"messages\": [{\"role\": \"user\", \"content\": \"What is the capital of France?\"}],\n",
    "}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.json())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## References\n",
    "\n",
    "EAGLE process is as follows:\n",
    "\n",
    "- Within EAGLE the draft model predicts the next feature vector, i.e. the last hidden state of the original LLM, using the feature sequence $(f_1, ..., f_k)$ and the token sequence $(t_2, ..., t_{k+1})$. \n",
    "- The next token is then sampled from $p_{k+2}=\\text{LMHead}(f_{k+1})$. Afterwards, the two sequences are extended in a tree style—branching out multiple potential continuations, with the branching factor per step controlled by the `speculative_eagle_topk` parameter—to ensure a more coherent connection of context, and are given as input again.\n",
    "- EAGLE-2 additionally uses the draft model to evaluate how probable certain branches in the draft tree are, dynamically stopping the expansion of unlikely branches. After the expansion phase, reranking is employed to select only the top `speculative_num_draft_tokens` final nodes as draft tokens.\n",
    "- EAGLE-3 removes the feature prediction objective, incorporates low and mid-layer features, and is trained in an on-policy manner.\n",
    "\n",
    "This enhances drafting accuracy by operating on the features instead of tokens for more regular inputs and passing the tokens from the next timestep additionally to minimize randomness effects from sampling. Furthermore the dynamic adjustment of the draft tree and selection of reranked final nodes increases acceptance rate of draft tokens further. For more details see [EAGLE-2](https://arxiv.org/abs/2406.16858) and [EAGLE-3](https://arxiv.org/abs/2503.01840) paper.\n",
    "\n",
    "\n",
    "For guidance how to train your own EAGLE model please see the [EAGLE repo](https://github.com/SafeAILab/EAGLE/tree/main?tab=readme-ov-file#train)."
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}