bench_hf.py 5.27 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import argparse

import PIL
import torch
from data_utils import save_json
from eval_utils import (
    EvalArgs,
    eval_result,
    get_sampling_params,
    prepare_samples,
    process_result,
)
from tqdm import tqdm
from transformers import AutoModel, AutoProcessor, GenerationConfig


@torch.no_grad()
def eval_mmmu(args):
    eval_args = EvalArgs.from_cli_args(args)

    sampling_params = get_sampling_params(eval_args)
    generation_config = GenerationConfig(
        max_new_tokens=sampling_params["max_new_tokens"],
        do_sample=False,
    )

    try:
        from transformers import AutoModelForImageTextToText

        model = AutoModelForImageTextToText.from_pretrained(
            args.model_path,
            torch_dtype="auto",
            trust_remote_code=True,
        )
    except Exception as first_exception:
        try:
            # check if the model is belongs to internvl
            if "InternVL" in args.model_path:
                from internvl_utils import load_image
                from transformers import AutoTokenizer

                tokenizer = AutoTokenizer.from_pretrained(args.model_path)
                model = AutoModel.from_pretrained(
                    args.model_path,
                    torch_dtype="auto",
                    trust_remote_code=True,
                )
                generation_config_internvl = dict(
                    max_new_tokens=sampling_params["max_new_tokens"], do_sample=False
                )

            else:
                model = AutoModel.from_pretrained(
                    args.model_path,
                    torch_dtype="auto",
                    trust_remote_code=True,
                    init_tts=False,
                )
        except Exception as second_exception:
            raise RuntimeError(
                f"Failed to load model: First attempt failed with {first_exception}, "
                f"second attempt failed with {second_exception}"
            ) from second_exception

    model = model.eval().cuda()

    processor = AutoProcessor.from_pretrained(
        args.model_path, torch_dtype="auto", device_map="auto", trust_remote_code=True
    )

    samples = prepare_samples(eval_args)
    out_samples = dict()

    answer_dict = {}
    for sample in tqdm(samples):
        prompt = sample["final_input_prompt"]
        image = sample["image"]
        prefix = prompt.split("<")[0]
        suffix = prompt.split(">")[1]
        assert image is not None

        if "InternVL" in args.model_path:
            pixel_values = load_image(sample["image_path"]).to(torch.bfloat16).cuda()
            contents = ""
            if prefix:
                contents += prefix
            contents += "<image>\n"
            if suffix:
                contents += suffix
            response = model.chat(
                tokenizer, pixel_values, contents, generation_config_internvl
            )
            print(f"response: {response}")
            process_result(response, sample, answer_dict, out_samples)
            continue

        contents = []
        if prefix:
            contents += [{"type": "text", "text": prefix}]
        contents += [
            {
                "type": "image",
                "image": sample["image_path"],
            }
        ]
        if suffix:
            contents += [{"type": "text", "text": suffix}]
        messages = [{"role": "user", "content": contents}]
        try:
            model_inputs = processor.tokenizer.apply_chat_template(
                messages,
                tokenize=True,
                return_dict=True,
                add_generation_prompt=True,
                return_tensors="pt",
            ).to(model.device)
            input_len = model_inputs["input_ids"].shape[-1]
            generation = model.generate(
                **model_inputs, generation_config=generation_config
            )
            generation = generation[0][input_len:]
            response = processor.decode(generation, skip_special_tokens=True)
        except:
            contents = []
            if prefix:
                contents += [prefix]
            image = PIL.Image.open(sample["image_path"])
            contents += [image]
            if suffix:
                contents += [suffix]
            messages = [{"role": "user", "content": contents}]
            response = model.chat(
                msgs=messages,
                tokenizer=processor.tokenizer,
                sampling=False,
                max_new_tokens=sampling_params["max_new_tokens"],
                use_tts_template=False,
                generate_audio=False,
                temperature=0.0,
            )
        print(f"response: {response}")
        process_result(response, sample, answer_dict, out_samples)

    args.output_path = f"{args.model_path}_answer_hf.json"
    save_json(args.output_path, out_samples)
    eval_result(
        model_answer_path=args.output_path,
        answer_dict=answer_dict,
        eval_output_path=f"{args.model_path}_val_hf.json",
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model-path",
        type=str,
        help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
        required=True,
    )
    EvalArgs.add_cli_args(parser)
    args = parser.parse_args()

    eval_mmmu(args)