bench_sglang.py 4.81 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import argparse
import json
import os
import time

import numpy as np
import pandas as pd
import tiktoken

from sglang.test.test_utils import (
    add_common_sglang_args_and_parse,
    dump_bench_raw_result,
    select_sglang_backend,
)

choices = ["A", "B", "C", "D"]

tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo")


def format_subject(subject):
    l = subject.split("_")
    s = ""
    for entry in l:
        s += " " + entry
    return s


def format_example(df, idx, include_answer=True):
    prompt = df.iloc[idx, 0]
    k = df.shape[1] - 2
    for j in range(k):
        prompt += "\n{}. {}".format(choices[j], df.iloc[idx, j + 1])
    prompt += "\nAnswer:"
    if include_answer:
        prompt += " {}\n\n".format(df.iloc[idx, k + 1])
    return prompt


def gen_prompt(train_df, subject, k=-1):
    prompt = "The following are multiple choice questions (with answers) about{}.\n\n".format(
        format_subject(subject)
    )
    if k == -1:
        k = train_df.shape[0]
    for i in range(k):
        prompt += format_example(train_df, i)
    return prompt


def main(args):
    subjects = sorted(
        [
            f.split("_test.csv")[0]
            for f in os.listdir(os.path.join(args.data_dir, "test"))
            if "_test.csv" in f
        ]
    )

    # Build prompts
    arguments = []
    labels = []
    num_questions = []

    for subject in subjects[: args.nsub]:
        dev_df = pd.read_csv(
            os.path.join(args.data_dir, "dev", subject + "_dev.csv"), header=None
        )[: args.ntrain]
        test_df = pd.read_csv(
            os.path.join(args.data_dir, "test", subject + "_test.csv"), header=None
        )
        num_questions.append(test_df.shape[0])

        k = args.ntrain
        few_shot_examples = gen_prompt(dev_df, subject, k)
        while len(tokenizer.encode(few_shot_examples)) > 1536:
            k -= 1
            few_shot_examples = gen_prompt(dev_df, subject, k)

        for i in range(test_df.shape[0]):
            prompt_end = format_example(test_df, i, include_answer=False)

            arguments.append(
                {
                    "examples": few_shot_examples,
                    "question": prompt_end,
                }
            )

            label = test_df.iloc[i, test_df.shape[1] - 1]
            labels.append(label)

    #####################################
    ######### SGL Program Begin #########
    #####################################

    import sglang as sgl

    if args.backend.startswith("gpt-"):

        @sgl.function
        def few_shot_mmlu(s, examples, question):
            s += sgl.user(examples + question)
            s += sgl.assistant(sgl.gen("answer"))

    else:

        @sgl.function
        def few_shot_mmlu(s, examples, question):
            s += examples + question + sgl.gen("answer")

    #####################################
    ########## SGL Program End ##########
    #####################################

    # Select backend
    backend = select_sglang_backend(args)

    # Run
    tic = time.perf_counter()
    states = few_shot_mmlu.run_batch(
        arguments,
        temperature=0,
        max_new_tokens=1,
        backend=backend,
        num_threads=args.parallel,
        progress_bar=True,
    )
    preds = [
        s["answer"].strip()[0] if len(s["answer"].strip()) > 0 else "" for s in states
    ]
    latency = time.perf_counter() - tic

    # Compute accuracy
    cors = [pred == label for pred, label in zip(preds, labels)]

    pt = 0
    for subject, num_qs in zip(subjects[: args.nsub], num_questions):
        print(
            f"subject: {subject}, #q:{num_qs}, acc: {np.mean(cors[pt: pt + num_qs]):.3f}"
        )
        pt += num_qs
    assert pt == len(cors)
    weighted_acc = np.mean(cors)

    dump_bench_raw_result(
        path=args.raw_result_file,
        states=states,
        preds=preds,
        labels=labels,
    )

    # Print results
    print("Total latency: {:.3f}".format(latency))
    print("Average accuracy: {:.3f}".format(weighted_acc))

    # Write results
    with open(args.result_file, "a") as fout:
        value = {
            "task": "mmlu",
            "backend": args.backend,
            "num_gpus": 1,
            "latency": round(latency, 3),
            "accuracy": round(weighted_acc, 3),
            "num_requests": len(arguments),
            "other": {
                "nsub": args.nsub,
                "parallel": args.parallel,
            },
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--ntrain", "-k", type=int, default=5)
    parser.add_argument("--data_dir", "-d", type=str, default="data")
    parser.add_argument("--save_dir", "-s", type=str, default="results")
    parser.add_argument("--nsub", type=int, default=60)
    args = add_common_sglang_args_and_parse(parser)
    main(args)