bench_other.py 4.91 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import argparse
import asyncio
import json
import os
import time
from concurrent.futures import ThreadPoolExecutor

import numpy as np
import pandas as pd
import tiktoken
from tqdm import tqdm

from sglang.test.test_utils import add_common_other_args_and_parse, get_call_generate

choices = ["A", "B", "C", "D"]

tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo")


def format_subject(subject):
    l = subject.split("_")
    s = ""
    for entry in l:
        s += " " + entry
    return s


def format_example(df, idx, include_answer=True):
    prompt = df.iloc[idx, 0]
    k = df.shape[1] - 2
    for j in range(k):
        prompt += "\n{}. {}".format(choices[j], df.iloc[idx, j + 1])
    prompt += "\nAnswer:"
    if include_answer:
        prompt += " {}\n\n".format(df.iloc[idx, k + 1])
    return prompt


def gen_prompt(train_df, subject, k=-1):
    prompt = "The following are multiple choice questions (with answers) about{}.\n\n".format(
        format_subject(subject)
    )
    if k == -1:
        k = train_df.shape[0]
    for i in range(k):
        prompt += format_example(train_df, i)
    return prompt


def evaluate(args, subject, dev_df, test_df, call_generate):
    prompts = []
    labels = []

    # Construct prompts
    k = args.ntrain
    train_prompt = gen_prompt(dev_df, subject, k)
    while len(tokenizer.encode(train_prompt)) > 1536:
        k -= 1
        train_prompt = gen_prompt(dev_df, subject, k)

    for i in range(test_df.shape[0]):
        prompt_end = format_example(test_df, i, include_answer=False)
        prompt = train_prompt + prompt_end
        prompts.append(prompt)

        label = test_df.iloc[i, test_df.shape[1] - 1]
        labels.append(label)

    preds = [None] * len(prompts)
    max_tokens = 1

    # Run requests
    if args.backend != "lmql":
        # Use thread pool
        def get_one_answer(i):
            pred = call_generate(prompts[i], temperature=0, max_tokens=max_tokens)
            preds[i] = pred.strip()[0]

        tic = time.perf_counter()
        if args.parallel == 1:
            for i in range(len(prompts)):
                get_one_answer(i)
        else:
            with ThreadPoolExecutor(args.parallel) as executor:
                executor.map(get_one_answer, list(range(len(prompts))))
    else:
        # Use asyncio
        async def batched_call(batch_size):
            for i in range(0, len(prompts), batch_size):
                tasks = []
                for p in prompts[i : i + batch_size]:
                    tasks.append(call_generate(p, temperature=0, max_tokens=max_tokens))
                rets = await asyncio.gather(*tasks)
                for j in range(len(rets)):
                    preds[i + j] = rets[j].strip()[0]

        tic = time.perf_counter()
        asyncio.run(batched_call(batch_size=args.parallel))
    latency = time.perf_counter() - tic

    # Compute accuracy
    cors = [pred == label for pred, label in zip(preds, labels)]
    acc = np.mean(cors)
    cors = np.array(cors)

    print(
        "Average accuracy {:.3f}, latency {:.2f}, #q: {} - {}".format(
            acc, latency, len(prompts), subject
        )
    )

    return cors, acc, latency


def main(args):
    subjects = sorted(
        [
            f.split("_test.csv")[0]
            for f in os.listdir(os.path.join(args.data_dir, "test"))
            if "_test.csv" in f
        ]
    )

    all_cors = []
    all_latencies = []
    num_requests = 0

    # Select backend
    call_generate = get_call_generate(args)

    for subject in tqdm(subjects[: args.nsub]):
        dev_df = pd.read_csv(
            os.path.join(args.data_dir, "dev", subject + "_dev.csv"), header=None
        )[: args.ntrain]
        test_df = pd.read_csv(
            os.path.join(args.data_dir, "test", subject + "_test.csv"), header=None
        )

        cors, acc, latency = evaluate(args, subject, dev_df, test_df, call_generate)
        all_cors.append(cors)
        all_latencies.append(latency)
        num_requests += len(test_df)

    total_latency = np.sum(all_latencies)
    print("Total latency: {:.3f}".format(total_latency))

    weighted_acc = np.mean(np.concatenate(all_cors))
    print("Average accuracy: {:.3f}".format(weighted_acc))

    # Write results
    with open(args.result_file, "a") as fout:
        value = {
            "task": "mmlu",
            "backend": args.backend,
            "num_gpus": 1,
            "latency": round(total_latency, 3),
            "accuracy": round(weighted_acc, 3),
            "num_requests": num_requests,
            "other": {
                "nsub": args.nsub,
                "parallel": args.parallel,
            },
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--ntrain", type=int, default=5)
    parser.add_argument("--data_dir", type=str, default="data")
    parser.add_argument("--nsub", type=int, default=60)
    args = add_common_other_args_and_parse(parser)
    main(args)