bench_sglang.py 4.65 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import argparse
import json
import re
import time

import numpy as np

import sglang as sgl
from sglang.test.test_utils import (
    add_common_sglang_args_and_parse,
    select_sglang_backend,
)
from sglang.utils import dump_state_text


@sgl.function
def line_retrieval(s, prefix, suffix, body_0, body_1, body_2, body_3):
    s += prefix + "\n"

    contexts = [body_0, body_1, body_2, body_3]
    position_ids_offset = [i * 1000 for i in range(len(contexts))]
    forks = s.fork(len(contexts), position_ids_offset)
    forks += lambda i: contexts[i] + "\n"
    forks.join(mode="concate_and_append")

    s += "\n" + suffix
    s += sgl.gen("answer", max_tokens=16)


def eval_model(args, line_obj, num_hoops, src_indices, dst_percents):
    arguments = []
    labels = []
    sum_src_indices = []
    sum_dst_indices = []

    for i in range(len(src_indices)):
        for j in range(len(dst_percents)):
            src_index = src_indices[i]
            dst_percent = dst_percents[j]

            query_indices = line_obj["group_by_num_hoops"][str(num_hoops)]
            query_indices = [
                q
                for q in query_indices
                if all(l <= src_index for l in line_obj["links"][q]) and q < src_index
            ]
            dst_index = query_indices[
                min(int(len(query_indices) * dst_percent), len(query_indices) - 1)
            ]
            label = line_obj["values"][dst_index]

            body = line_obj["lines"][: src_index + 1]
            suffix = line_obj["suffix"].replace("???", line_obj["indices"][dst_index])
            body_part_len = len(body) // 4

            arguments.append(
                {
                    "prefix": line_obj["prefix"],
                    "body_0": "\n".join(body[:body_part_len]),
                    "body_1": "\n".join(body[body_part_len : 2 * body_part_len]),
                    "body_2": "\n".join(body[2 * body_part_len : 3 * body_part_len]),
                    "body_3": "\n".join(body[3 * body_part_len :]),
                    "suffix": suffix,
                }
            )
            labels.append(label)
            sum_src_indices.append(src_index)
            sum_dst_indices.append(dst_index)

    # Select backend
    backend = select_sglang_backend(args)

    tic = time.perf_counter()
    states = line_retrieval.run_batch(
        arguments,
        temperature=0,
        backend=backend,
        num_threads=args.parallel,
        progress_bar=True,
    )
    latency = time.perf_counter() - tic

    corrects = []
    for i in range(len(arguments)):
        output = states[i]["answer"]
        prompt_len = states[i].get_meta_info("answer").get("prompt_length", -1)
        label = labels[i]

        # Try all numbers
        findall = re.findall("\d+", output)
        if not findall:
            response_number = output
        else:
            for response_number in findall:
                if response_number == label:
                    break

        correct = response_number == label
        corrects.append(correct)

        # Log results
        summary = (
            f"Line index: {sum_src_indices[i]} -> {sum_dst_indices[i]}, "
            f"Prompt len: {prompt_len}, "
            f"Correct: {correct}, "
            f"Label: {label}, Predicted: {response_number}, "
        )
        print(summary)

    accuracy = np.mean(corrects)
    print(f"Accuracy: {accuracy:.3f}, latency: {latency:.2f} s")

    # Write results
    dump_state_text(f"tmp_output_{args.backend}.txt", states)

    with open(args.result_file, "a") as fout:
        value = {
            "task": "line_retrieval",
            "backend": args.backend,
            "num_gpus": 1,
            "latency": round(latency, 3),
            "num_requests": len(arguments),
            "other": {
                "num_questions": len(arguments),
                "parallel": args.parallel,
            },
        }
        fout.write(json.dumps(value) + "\n")


def main(args):
    line_obj = json.load(open(args.data_path, "r"))

    num_hoops = args.num_hoops
    for src_index in args.src_index:
        src_indices = [src_index]
        num_queries = args.num_queries_per_src
        dst_percents = [i * (1 / (num_queries)) for i in range(num_queries)]
        eval_model(args, line_obj, num_hoops, src_indices, dst_percents)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--data-path", type=str, default="lines_1000_0.0.json")
    parser.add_argument("--src-index", type=int, nargs="+", default=[100])
    parser.add_argument("--num-queries-per-src", type=int, default=10)
    parser.add_argument("--num-hoops", type=int, default=1)
    args = add_common_sglang_args_and_parse(parser)
    main(args)