bench_other.py 9.34 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import argparse
import json
import time
from concurrent.futures import ThreadPoolExecutor
from functools import partial

import guidance
from tqdm import tqdm

from sglang.test.test_utils import add_common_other_args_and_parse, get_call_generate
from sglang.utils import dump_state_text, read_jsonl

# there are some FSM bugs with json regex converted from pydantic model
# here use a string regex instead
# regex_string = build_regex_from_object(HarryPoterRole)
character_regex = (
    r"""\{\n"""
    + r"""    "name": "[\w\d\s]{1,16}",\n"""
    + r"""    "house": "(Gryffindor|Slytherin|Ravenclaw|Hufflepuff)",\n"""
    + r"""    "blood status": "(Pure-blood|Half-blood|Muggle-born)",\n"""
    + r"""    "occupation": "(student|teacher|auror|ministry of magic|death eater|order of the phoenix)",\n"""
    + r"""    "wand": \{\n"""
    + r"""        "wood": "[\w\d\s]{1,16}",\n"""
    + r"""        "core": "[\w\d\s]{1,16}",\n"""
    + r"""        "length": [0-9]{1,2}\.[0-9]{0,2}\n"""
    + r"""    \},\n"""
    + r"""    "alive": "(Alive|Deceased)",\n"""
    + r"""    "patronus": "[\w\d\s]{1,16}",\n"""
    + r"""    "bogart": "[\w\d\s]{1,16}"\n"""
    + r"""\}"""
)

city_regex = (
    r"""\{\n"""
    + r"""  "name": "[\w\d\s]{1,16}",\n"""
    + r"""  "country": "[\w\d\s]{1,16}",\n"""
    + r"""  "latitude": [-+]?[0-9]*\.?[0-9]{0,2},\n"""
    + r"""  "population": [-+]?[0-9]{1,9},\n"""
    + r"""  "top 3 landmarks": \["[\w\d\s]{1,16}", "[\w\d\s]{1,16}", "[\w\d\s]{1,16}"\]\n"""
    + r"""\}"""
)

# fmt: off
def character_gen(name, generate):
    s = name + " is a character in Harry Potter. Please fill in the following information about this character.\n"
    s += generate(s, max_tokens=256, regex=character_regex)
    return s
# fmt: on

# fmt: off
def city_gen(document, generate):
    s = "Please extract the information of a city from the following wikipedia page.\n"
    s += "Page begin.\n" + document + "Page end.\n"
    s += "Here is the name, country, and symbol of the city in JSON format.\n"
    s += generate(s, max_tokens=256, regex=city_regex)
    return s
# fmt: on


@guidance
def character_maker(lm, name):
    regex_str_no_quote = r"[\w\d\s]+"
    regex_float = r"[0-9]+\.[0-9]+"
    lm += f"""\
    {name} is a character in Harry Potter. Please fill in the following information about this character.
    {{
        "name": "{guidance.gen("name", max_tokens=16, regex=regex_str_no_quote)}",
        "house": "{guidance.select(options=['Gryffindor', 'Slytherin', 'Ravenclaw', 'Hufflepuff'], name='house')}",
        "blood status": "{guidance.select(options=['Pure-blood', 'Half-blood', 'Muggle-born'], name='blood status')}",
        "occupation": "{guidance.select(options=['student', 'teacher', 'auror', 'ministry of magic', 'death eater', 'order of the phoenix'], name='occupation')}",
        "wand": {{
            "wood": "{guidance.gen("wood", max_tokens=16, regex=regex_str_no_quote)}",
            "core": "{guidance.gen('core', max_tokens=16, regex=regex_str_no_quote)}",
            "length": {guidance.gen('length', max_tokens=10, regex=regex_float)}
        }},
        "alive": "{guidance.select(options=['Alive', 'Deceased'], name='alive')}",
        "patronus": "{guidance.gen('patronus', max_tokens=16, regex=regex_str_no_quote)}",
        "bogart": "{guidance.gen('bogart', max_tokens=16, regex=regex_str_no_quote)}"
    }}
    """

    return lm


async def call_generate_lmql(
    prompt, temperature, max_tokens, regex, max_len=4096, model=None, **kwargs
):
    assert model is not None
    import lmql

    @lmql.query(model=model)
    async def program(question, max_tokens, regex):
        '''lmql
        """{question}[ANSWER]""" where len(TOKENS(ANSWER)) < max_tokens and REGEX(ANSWER, regex)
        return ANSWER
        '''

    return await program(
        question=prompt,
        temperature=temperature,
        max_tokens=max_tokens,
        max_len=max_len,
        regex=regex,
        **kwargs,
    )


@guidance
def city_maker(lm, document):
    regex_str_no_quote = r"[\w\d\s]+"
    regex_float = r"[0-9]+\.[0-9]+"
    lm += f"""\
    Please extract the information of a city from the following wikipedia page.
    Page begin.
    {document}
    Page end.
    Here is the name, country, and symbol of the city in JSON format.
    {{
        "name": "{guidance.gen("name", max_tokens=16, regex=regex_str_no_quote)}",
        "country": "{guidance.gen("country", max_tokens=16, regex=regex_str_no_quote)}",
        "latitude": {guidance.gen("latitude", max_tokens=10, regex=regex_float)},
        "population": {guidance.gen("population", max_tokens=10, regex=r"[0-9]+")},
        "top 3 landmarks": [
            "{guidance.gen("landmark1", max_tokens=16, regex=regex_str_no_quote)}", "{guidance.gen("landmark2", max_tokens=16, regex=regex_str_no_quote)}", "{guidance.gen("landmark3", max_tokens=16, regex=regex_str_no_quote)}"
        ]
    }}
    """

    return lm


def bench_character(args):
    arguments = []
    with open(args.data_path, "r") as f:
        for line in f:
            arguments.append({"name": line.strip()})
    arguments = arguments[: args.num_jsons]

    states = [None] * len(arguments)

    # Select backend
    if args.backend == "outlines":
        call_generate = partial(get_call_generate(args), temperature=0)

        def get_one_answer(i):
            states[i] = character_gen(**arguments[i], generate=call_generate)

    elif args.backend == "guidance":
        model = guidance.models.LlamaCpp(
            args.model_path,
            n_gpu_layers=-1,
            n_ctx=args.n_ctx,
        )

        def get_one_answer(i):
            lm = model + character_maker(**arguments[i])
            states[i] = lm

    elif args.backend == "lmql":
        import asyncio

        import lmql

        model = lmql.model(args.model_path, endpoint=f"{args.host}:{args.port}")
        call_generate = partial(
            call_generate_lmql,
            model=model,
            max_tokens=256,
            regex=character_regex,
        )

        async def get_one_answer_async(i):
            states[i] = await call_generate(prompt=arguments[i]["name"], temperature=0)

    else:
        raise ValueError(f"Invalid backend: {args.backend}")

    tic = time.perf_counter()

    if args.backend != "lmql":
        if args.parallel == 1:
            for i in tqdm(range(len(arguments))):
                get_one_answer(i)
        else:
            with ThreadPoolExecutor(args.parallel) as executor:
                rets = list(
                    tqdm(
                        executor.map(get_one_answer, list(range(len(arguments)))),
                        total=len(arguments),
                    )
                )
                for _ in rets:
                    pass
    else:
        batches = []
        for i in range(0, len(arguments), args.parallel):
            batches.append(list(range(i, min(i + args.parallel, len(arguments)))))
        loop = asyncio.get_event_loop()

        for bt in tqdm(batches):
            loop.run_until_complete(
                asyncio.gather(*[get_one_answer_async(i) for i in bt])
            )

    latency = time.perf_counter() - tic

    return states, latency


def bench_city_doc(args):
    arguments = []
    for line in read_jsonl(args.data_path):
        arguments.append({"document": line["document"]})
    arguments = arguments[: args.num_jsons]

    states = [None] * len(arguments)

    # Select backend
    if args.backend == "outlines":
        call_generate = partial(get_call_generate(args), temperature=0)

        def get_one_answer(i):
            states[i] = city_gen(**arguments[i], generate=call_generate)

    elif args.backend == "guidance":
        model = guidance.models.LlamaCpp(
            args.model_path,
            n_gpu_layers=-1,
            n_ctx=args.n_ctx,
        )

        def get_one_answer(i):
            lm = model + city_maker(**arguments[i])
            states[i] = lm

    else:
        raise ValueError(f"Invalid backend: {args.backend}")

    tic = time.perf_counter()
    if args.parallel == 1:
        for i in tqdm(range(len(arguments))):
            get_one_answer(i)
    else:
        with ThreadPoolExecutor(args.parallel) as executor:
            rets = executor.map(get_one_answer, list(range(len(arguments))))
            for _ in rets:
                pass

    latency = time.perf_counter() - tic

    return states, latency


def main(args):
    if args.mode == "character":
        args.data_path = "dataset.txt"
        states, latency = bench_character(args)
    elif args.mode == "city":
        args.data_path = "questions.jsonl"
        states, latency = bench_city_doc(args)

    # Compute accuracy
    print(f"Latency: {latency:.3f}")

    # Write results
    dump_state_text(f"tmp_output_{args.backend}_{args.mode}.txt", states)

    with open(args.result_file, "a") as fout:
        value = {
            "task": "json_jump_forward",
            "backend": args.backend,
            "latency": round(latency, 3),
            "num_jsons": args.num_jsons,
            "mode": args.mode,
            "parallel": args.parallel,
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--data-path", type=str)
    parser.add_argument("--num-jsons", type=int, default=50)
    parser.add_argument(
        "--mode", type=str, default="character", choices=["character", "city"]
    )
    args = add_common_other_args_and_parse(parser)
    main(args)