bench_multiturn.py 18.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
import argparse
import asyncio
import json
import queue
import random
import threading
import time
from datetime import datetime
from typing import Optional

import aiohttp
import numpy as np
import requests
from tqdm.asyncio import tqdm

from sglang.bench_serving import (
    RequestFuncOutput,
    get_tokenizer,
    remove_prefix,
    sample_random_requests,
)

AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=20 * 60 * 60)


def parse_args():
    parser = argparse.ArgumentParser(
        description="Script to benchmark concurrent requests to a server."
    )
    parser.add_argument(
        "--num-clients",
        type=int,
        default=256,
        help="Number of concurrent clients",
    )
    parser.add_argument(
        "--max-parallel",
        type=int,
        default=128,
        help="Maximum number of parallel requests",
    )
    parser.add_argument(
        "--request-length",
        type=int,
        default=512,
        help="Length of each new request",
    )
    parser.add_argument(
        "--output-length",
        type=int,
        default=64,
        help="Length of each output",
    )
    parser.add_argument(
        "--num-rounds",
        type=int,
        default=5,
        help="Number of rounds per client",
    )
    parser.add_argument(
        "--distribution",
        type=str,
        default="poisson",
        choices=["poisson", "uniform"],
        help="Distribution type for request intervals (poisson or uniform)",
    )
    parser.add_argument(
        "--request-rate",
        type=float,
        default=1.0,
        help="Average number of requests per second",
    )
    parser.add_argument(
        "--host",
        type=str,
        default="localhost",
        help="Server hostname or IP (default: localhost)",
    )
    parser.add_argument(
        "--port",
        type=int,
        default=30000,
        help="Server port (default: 30000)",
    )
    parser.add_argument(
        "--model-path",
        type=str,
        default="meta-llama/Llama-3.1-8B-Instruct",
        help="model path compatible with Hugging Face Transformers",
    )
    parser.add_argument(
        "--dataset-path",
        type=str,
        default="",
        help="local dataset to sample tokens from",
    )
    parser.add_argument(
        "--log-file",
        type=str,
        default="performance_metrics.jsonl",
        help="File to log performance metrics",
    )
    parser.add_argument(
        "--disable-auto-run",
        action="store_true",
        help="If set, disable automatically testing with a range of request rates.",
    )

    parser.add_argument(
        "--disable-random-sample",
        action="store_true",
        help="If set, disable random sampling of requests from the ShareGPT dataset.",
    )
    parser.add_argument(
        "--sub-question-input-length",
        type=int,
        default=0,
        help="Length of the sub question input for each request, if set 0 use request_length",
    )
    parser.add_argument(
        "--ready-queue-policy",
        type=str,
        default="random",
        help="Policy for popping requests from the ready queue (random or fifo)",
    )
    parser.add_argument(
        "--tag",
        type=str,
        default="",
        help="Tag of a certain run in the log file",
    )
    parser.add_argument("--seed", type=int, default=1, help="The random seed.")
    parser.add_argument(
        "--lora-path",
        type=str,
        default="",
        help="String of LoRA path. Currently we only support benchmarking on a single LoRA adaptor.",
    )
    return parser.parse_args()


async def async_request_sglang_generate(
    payload,
    url,
    pbar: Optional[tqdm] = None,
):
    """
    Sends a streaming request to the server. Gathers text token-by-token.
    """
    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        headers = {}
        generated_text = ""
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        output = RequestFuncOutput()

        try:
            async with session.post(url=url, json=payload, headers=headers) as response:
                if response.status == 200:
                    prompt_tokens = 0
                    cached_tokens = 0
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
                        latency = time.perf_counter() - st
                        if chunk == "[DONE]":
                            pass
                        else:
                            data = json.loads(chunk)

                            if data["text"]:
                                timestamp = time.perf_counter()
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft
                                    prompt_tokens = (data.get("meta_info") or {}).get(
                                        "prompt_tokens", 0
                                    )
                                    cached_tokens = (data.get("meta_info") or {}).get(
                                        "cached_tokens", 0
                                    )

                                # Decoding phase
                                else:
                                    output.itl.append(timestamp - most_recent_timestamp)

                                most_recent_timestamp = timestamp
                                generated_text = data["text"]

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
                    output.prompt_len = prompt_tokens
                    output.cached_tokens = cached_tokens
                    output.generated_len = len(output.itl) + 1
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception as e:
            output.success = False
            output.error = str(e)
            print(f"Request failed: {e}")

    if pbar:
        pbar.update(1)
    return output


def gen_payload(prompt, output_len, lora_path=""):
    payload = {
        "text": prompt,
        "sampling_params": {
            "temperature": 0.0,
            "max_new_tokens": output_len,
            "ignore_eos": True,
        },
        "stream": True,
        "stream_options": {"include_usage": True},
        "lora_path": lora_path,
        "return_logprob": False,
        "logprob_start_len": -1,
    }
    return payload


def log_to_jsonl_file(data, file_path="performance_metrics.jsonl", tag=""):
    """Append the data with a timestamp and tag to the specified JSONL file."""
    timestamped_data = {"timestamp": datetime.now().isoformat(), "tag": tag, **data}
    try:
        with open(file_path, "a") as file:
            file.write(
                json.dumps(timestamped_data) + "\n"
            )  # Write as a single line in JSONL format
    except IOError as e:
        print(f"Error writing to JSONL file: {e}")


class ReadyQueue:
    """
    Thread-safe queue that can pop requests in different orders based on given policy.
    """

    def __init__(self, init_requests=None, policy="random"):
        self.lock = threading.Lock()
        self.requests = init_requests or []
        self.policy = policy

    def append(self, item):
        with self.lock:
            self.requests.append(item)

    def pop(self):
        with self.lock:
            if not self.requests:
                return None
            if self.policy == "random":
                index = random.randrange(len(self.requests))
                return self.requests.pop(index)
            elif self.policy == "fifo":
                return self.requests.pop(0)
            else:
                # todo, varying thinking time of clients
                raise ValueError(f"{self.policy} not implemented")


class WorkloadGenerator:
    def __init__(self, args):
        # Construct the base URL for requests
        self.url = f"http://{args.host}:{args.port}/generate"

        self.tokenizer = get_tokenizer(args.model_path)
        self.distribution = args.distribution
        self.request_rate = args.request_rate
        self.start_time = None
        self.finished_time = None

        self.sent_requests = 0
        self.completed_requests = 0

        self.candidate_inputs = sample_random_requests(
            input_len=args.request_length,
            output_len=args.output_length,
            num_prompts=args.num_clients,
            range_ratio=1.0,
            tokenizer=self.tokenizer,
            dataset_path=args.dataset_path,
            random_sample=not args.disable_random_sample,
        )
        self.candidate_inputs = [i.prompt for i in self.candidate_inputs]

        if args.sub_question_input_length != 0:
            sub_question_input_length = args.sub_question_input_length
        else:
            sub_question_input_length = args.request_length

        self.sub_question_inputs = sample_random_requests(
            input_len=sub_question_input_length,
            output_len=args.output_length,
            num_prompts=args.num_clients * max(args.num_rounds - 1, 1),
            range_ratio=1.0,
            tokenizer=self.tokenizer,
            dataset_path=args.dataset_path,
            random_sample=not args.disable_random_sample,
        )

        init_requests = [
            (
                i,
                gen_payload(
                    self.candidate_inputs[i], args.output_length, args.lora_path
                ),
            )
            for i in range(args.num_clients)
        ]
        self.client_records = {
            i: {"round": 0, "history": init_requests[i][1]["text"]}
            for i in range(args.num_clients)
        }
        self.ready_queue = ReadyQueue(
            init_requests=init_requests, policy=args.ready_queue_policy
        )
        self.candidate_inputs = self.candidate_inputs[args.num_clients :]

        self.response_queue = queue.Queue()
        self.pbar = tqdm(total=args.num_clients * args.num_rounds)
        self.performance_metrics = {
            "ttft": [],
            "latency": [],
            "prompt_len": [],
            "cached_tokens": [],
            "generated_len": [],
        }
        self.num_rounds = args.num_rounds
        self.max_parallel = args.max_parallel
        self.output_length = args.output_length

    async def handle_request(self, item):
        try:
            client_id, payload = item
            response = await async_request_sglang_generate(payload, self.url, self.pbar)
            if self.pbar.n == self.pbar.total:
                self.finished_time = time.perf_counter()
            self.response_queue.put((client_id, response))
        except Exception as e:
            print(f"Request failed: {e}")

    def request_sender(self):
        async def request_loop():
            while True:
                if self.sent_requests - self.completed_requests < self.max_parallel:
                    new_request = self.ready_queue.pop()
                    if new_request:
                        asyncio.create_task(self.handle_request(new_request))
                        self.sent_requests += 1
                else:
                    await asyncio.sleep(0.05)
                    continue

                if self.pbar.n == self.pbar.total:
                    break

                # Calculate Poisson-distributed wait time
                if self.distribution == "poisson":
                    sleep_time = random.expovariate(self.request_rate)
                elif self.distribution == "uniform":
                    avg_interval = (
                        1.0 / self.request_rate if self.request_rate > 0 else 1.0
                    )
                    sleep_time = random.uniform(0, 2 * avg_interval)
                else:
                    raise ValueError("Invalid distribution type")
                await asyncio.sleep(sleep_time)  # Wait before sending the next request

        # Create and run the event loop for asynchronous requests
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
        loop.run_until_complete(request_loop())
        loop.close()

    def response_handler(self):
        while True:
            try:
                client_id, response = self.response_queue.get(
                    timeout=10
                )  # Block until response is available
                if not response.success:
                    raise ValueError(f"Request failed with error: {response.error}")
                self.client_records[client_id]["history"] += response.generated_text
                self.client_records[client_id]["round"] += 1
                self.performance_metrics["ttft"].append(response.ttft)
                self.performance_metrics["latency"].append(response.latency)
                self.performance_metrics["prompt_len"].append(response.prompt_len)
                self.performance_metrics["cached_tokens"].append(response.cached_tokens)
                self.performance_metrics["generated_len"].append(response.generated_len)
                self.completed_requests += 1

                if self.client_records[client_id]["round"] < self.num_rounds:
                    # append new request to client's history
                    self.client_records[client_id][
                        "history"
                    ] += self.sub_question_inputs.pop().prompt
                    self.ready_queue.append(
                        (
                            client_id,
                            gen_payload(
                                self.client_records[client_id]["history"],
                                self.output_length,
                                args.lora_path,
                            ),
                        )
                    )
            except queue.Empty:
                if self.pbar.n == self.pbar.total:
                    break
            except ValueError as e:
                print(f"Error processing response for client {client_id}: {e}")
                continue

    def run(self):
        request_thread = threading.Thread(target=self.request_sender, daemon=True)
        response_thread = threading.Thread(target=self.response_handler, daemon=True)

        self.start_time = time.perf_counter()
        request_thread.start()
        response_thread.start()

        request_thread.join()
        response_thread.join()
        self.pbar.close()

        duration = self.finished_time - self.start_time
        performance_data = {
            "summary": {
                "total_requests": len(self.performance_metrics["ttft"]),
                "request_rate": self.request_rate,
                "average_ttft": sum(self.performance_metrics["ttft"])
                / len(self.performance_metrics["ttft"]),
                "p90_ttft": sorted(self.performance_metrics["ttft"])[
                    int(0.9 * len(self.performance_metrics["ttft"]))
                ],
                "median_ttft": sorted(self.performance_metrics["ttft"])[
                    len(self.performance_metrics["ttft"]) // 2
                ],
                "average_latency": sum(self.performance_metrics["latency"])
                / len(self.performance_metrics["latency"]),
                "p90_latency": sorted(self.performance_metrics["latency"])[
                    int(0.9 * len(self.performance_metrics["latency"]))
                ],
                "median_latency": sorted(self.performance_metrics["latency"])[
                    len(self.performance_metrics["latency"]) // 2
                ],
                "input_token_throughput": sum(self.performance_metrics["prompt_len"])
                / duration,
                "output_token_throughput": sum(
                    self.performance_metrics["generated_len"]
                )
                / duration,
                "throughput": self.pbar.total / duration,
                "cache_hit_rate": (
                    0
                    if sum(self.performance_metrics["prompt_len"]) == 0
                    else sum(self.performance_metrics["cached_tokens"])
                    / sum(self.performance_metrics["prompt_len"])
                ),
            },
        }
        print("All requests completed")
        print("Performance metrics summary:")
        print(
            f"  Total requests: {performance_data['summary']['total_requests']} at {performance_data['summary']['request_rate']} requests per second"
        )
        print(f"  Average TTFT: {performance_data['summary']['average_ttft']:.2f}")
        print(f"  P90 TTFT: {performance_data['summary']['p90_ttft']:.2f}")
        print(f"  Median TTFT: {performance_data['summary']['median_ttft']:.2f}")
        print(
            f"  Average latency: {performance_data['summary']['average_latency']:.2f}"
        )
        print(f"  P90 latency: {performance_data['summary']['p90_latency']:.2f}")
        print(f"  Median latency: {performance_data['summary']['median_latency']:.2f}")
        print(
            f"  Input token throughput: {performance_data['summary']['input_token_throughput']:.2f} tokens per second"
        )
        print(
            f"  Output token throughput: {performance_data['summary']['output_token_throughput']:.2f} tokens per second"
        )
        print(
            f"  Request Throughput: {performance_data['summary']['throughput']:.2f} requests per second"
        )
        print(f"  Cache Hit Rate: {performance_data['summary']['cache_hit_rate']:.6f}")
        return performance_data


if __name__ == "__main__":
    args = parse_args()
    flush_cache_url = f"http://{args.host}:{args.port}/flush_cache"

    random.seed(args.seed)
    np.random.seed(args.seed)

    if args.disable_auto_run:
        print("Running with specified request rate...")
        request_rates = [args.request_rate]
    else:
        print("Auto-running with different request rates...")
        request_rates = [16, 14, 12, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

    for rate in request_rates:
        args.request_rate = rate
        requests.post(flush_cache_url)
        time.sleep(1)
        performance_data = WorkloadGenerator(args).run()
        log_to_jsonl_file(performance_data, args.log_file, tag=args.tag)