nsa_indexer.py 26 KB
Newer Older
fzyzcjy's avatar
fzyzcjy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
from __future__ import annotations

from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple

import torch
import torch.nn.functional as F
from einops import rearrange
from torch import nn

from sglang.srt.custom_op import CustomOp
from sglang.srt.utils import add_prefix, align, is_cuda, is_hip, is_npu

if is_cuda():
15
16
17
18
    try:
        import deep_gemm
    except ImportError as e:
        deep_gemm = e
fzyzcjy's avatar
fzyzcjy committed
19
20
21
22
23
24
25
26
27

from sglang.srt.layers.attention.nsa.utils import NSA_DUAL_STREAM, NSA_USE_REAL_INDEXER
from sglang.srt.layers.dp_attention import get_attention_tp_group
from sglang.srt.layers.linear import ReplicatedLinear
from sglang.srt.layers.quantization import deep_gemm_wrapper
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.rotary_embedding import get_rope_wrapper
from sglang.srt.model_executor.cuda_graph_runner import get_is_capture_mode
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
28
from sglang.srt.server_args import get_global_server_args
fzyzcjy's avatar
fzyzcjy committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

if TYPE_CHECKING:
    from sglang.srt.mem_cache.memory_pool import NSATokenToKVPool

DUAL_STREAM_TOKEN_THRESHOLD = 1024 if is_cuda() else 0


class BaseIndexerMetadata(ABC):
    @abstractmethod
    def get_seqlens_int32(self) -> torch.Tensor:
        """
        Return: (batch_size,) int32 tensor
        """

    @abstractmethod
    def get_page_table_64(self) -> torch.Tensor:
        """
        Return: (batch_size, num_blocks) int32, page table.
                The page size of the table is 64.
        """

    @abstractmethod
    def get_seqlens_expanded(self) -> torch.Tensor:
        """
        Return: (sum_extend_seq_len,) int32 tensor
        """

    @abstractmethod
    def topk_transform(
        self,
        logits: torch.Tensor,
        topk: int,
    ) -> torch.Tensor:
        """
        Perform topk selection on the logits and possibly transform the result.

        NOTE that attention backend may override this function to do some
        transformation, which means the result of this topk_transform may not
        be the topk indices of the input logits.

        Return: Anything, since it will be passed to the attention backend
                for further processing on sparse attention computation.
                Don't assume it is the topk indices of the input logits.
        """


def rotate_activation(x: torch.Tensor) -> torch.Tensor:
    assert x.dtype == torch.bfloat16
    from fast_hadamard_transform import hadamard_transform

    hidden_size = x.size(-1)
    assert (
        hidden_size & (hidden_size - 1)
    ) == 0, "Hidden size must be a power of 2 for Hadamard transform."
    return hadamard_transform(x, scale=hidden_size**-0.5)


class V32LayerNorm(nn.Module):
    """
    Layer Normalization.
    """

    def __init__(self, dim: int, eps: float = 1e-6):
        super().__init__()
        self.dim = dim
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim, dtype=torch.float32))
        self.bias = nn.Parameter(torch.zeros(dim, dtype=torch.float32))

    def forward(self, x: torch.Tensor):
        return F.layer_norm(
            x.float(), (self.dim,), self.weight, self.bias, self.eps
        ).type_as(x)


class Indexer(CustomOp):
    def __init__(
        self,
        hidden_size: int,
        index_n_heads: int,
        index_head_dim: int,
        rope_head_dim: int,
        index_topk: int,
        q_lora_rank: int,
        max_position_embeddings: int,
        rope_theta: float,
        layer_id: int,
        scale_fmt: Optional[str],
        block_size: int = 128,
        rope_scaling: Optional[Dict[str, Any]] = None,
        prefix: str = "",
        quant_config: Optional[QuantizationConfig] = None,
        alt_stream: Optional[torch.cuda.Stream] = None,
    ):
        super().__init__()
        self.hidden_size = hidden_size
        self.n_heads = index_n_heads
        self.head_dim = index_head_dim
        self.rope_head_dim = rope_head_dim
        self.index_topk = index_topk
        self.q_lora_rank = q_lora_rank
        self.layer_id = layer_id
        self.alt_stream = alt_stream
        if is_cuda():
            self.sm_count = deep_gemm.get_num_sms()
            self.half_device_sm_count = align(self.sm_count // 2, 8)

        self.wq_b = ReplicatedLinear(
            self.q_lora_rank,
            self.n_heads * self.head_dim,
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("wq_b", prefix),
        )
        self.wk = ReplicatedLinear(
            self.hidden_size,
            self.head_dim,
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("wk", prefix),
        )
        self.k_norm = V32LayerNorm(self.head_dim)
        # NOTE: weight_proj is not quantized
        self.weights_proj = ReplicatedLinear(
            self.hidden_size,
            self.n_heads,
            bias=False,
            prefix=add_prefix("weights_proj", prefix),
        )
        self.rotary_emb = get_rope_wrapper(
            rope_head_dim,
            rotary_dim=rope_head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,  # type: ignore
            rope_scaling=rope_scaling,
            is_neox_style=False,
165
            device=get_global_server_args().device,
fzyzcjy's avatar
fzyzcjy committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
        )
        self.block_size = block_size
        self.scale_fmt = scale_fmt
        self.softmax_scale = self.head_dim**-0.5

    def _forward_fake(
        self,
        x: torch.Tensor,
        q_lora: torch.Tensor,
        positions: torch.Tensor,
        forward_batch: ForwardBatch,
        layer_id: int,
    ):
        bs = x.shape[0]
        assert self.index_topk == 2048
        ans = torch.arange(0, self.index_topk, dtype=torch.int32, device=x.device)[
            None, ...
        ].repeat(bs, 1)
        if forward_batch.forward_mode.is_extend():
            assert (
                forward_batch.extend_seq_lens_cpu is not None
                and forward_batch.seq_lens_cpu is not None
            )
            which = 0
            for i, (kv_len, qo_len) in enumerate(
                zip(
                    forward_batch.seq_lens_cpu.tolist(),
                    forward_batch.extend_seq_lens_cpu,
                    strict=True,
                )
            ):
                for j in range(kv_len - qo_len, kv_len):
                    ans[which, j + 1 :] = -1
                    which += 1
            assert which == ans.shape[0]
        else:
            assert forward_batch.seq_lens_cpu is not None
            for i, seq_len in enumerate(forward_batch.seq_lens_cpu.tolist()):
                ans[i, seq_len:] = -1

        return ans

    def _get_logits_head_gate(self, x: torch.Tensor, q_scale: torch.Tensor):
        weights, _ = self.weights_proj(x)
        weights = weights * self.n_heads**-0.5
        weights = weights.unsqueeze(-1) * q_scale * self.softmax_scale
        return weights

    def _get_q_k_bf16(
        self,
        q_lora: torch.Tensor,
        x: torch.Tensor,
        positions: torch.Tensor,
        enable_dual_stream: bool,
    ):

        if enable_dual_stream:
            current_stream = torch.cuda.current_stream()
            self.alt_stream.wait_stream(current_stream)

            with deep_gemm_wrapper.configure_deep_gemm_num_sms(
                self.half_device_sm_count
            ):
                query, _ = self.wq_b(q_lora)
                query = rearrange(query, "l (h d) -> l h d", d=self.head_dim)
                q_rope, _ = torch.split(
                    query,
                    [self.rope_head_dim, self.head_dim - self.rope_head_dim],
                    dim=-1,
                )
            with torch.cuda.stream(self.alt_stream):
                # TODO we should also put DeepGEMM half SM here?
                key, _ = self.wk(x)
                key = self.k_norm(key)

                k_rope, _ = torch.split(
                    key,
                    [self.rope_head_dim, self.head_dim - self.rope_head_dim],
                    dim=-1,
                )

            current_stream.wait_stream(self.alt_stream)
        else:
            query, _ = self.wq_b(q_lora)
            query = rearrange(query, "l (h d) -> l h d", d=self.head_dim)

            q_rope, _ = torch.split(
                query, [self.rope_head_dim, self.head_dim - self.rope_head_dim], dim=-1
            )

            key, _ = self.wk(x)
            key = self.k_norm(key)
            k_rope, _ = torch.split(
                key, [self.rope_head_dim, self.head_dim - self.rope_head_dim], dim=-1
            )

        q_rope, k_rope = self.rotary_emb(positions, q_rope, k_rope)

        query[..., : self.rope_head_dim] = q_rope
        key[..., : self.rope_head_dim] = k_rope

        if enable_dual_stream:
            current_stream = torch.cuda.current_stream()
            self.alt_stream.wait_stream(current_stream)
            query = rotate_activation(query)

            with torch.cuda.stream(self.alt_stream):
                key = rotate_activation(key)
            current_stream.wait_stream(self.alt_stream)
        else:
            query = rotate_activation(query)
            key = rotate_activation(key)

        return query, key

    def _get_topk_paged(
        self,
        forward_batch: ForwardBatch,
        layer_id: int,
        q_fp8: torch.Tensor,
        weights: torch.Tensor,
        metadata: BaseIndexerMetadata,
    ) -> torch.Tensor:
        if TYPE_CHECKING:
            assert isinstance(forward_batch.token_to_kv_pool, NSATokenToKVPool)

        page_size = forward_batch.token_to_kv_pool.page_size
        # NOTE(dark): blocksize = 64 is hardcoded in deep_gemm
        assert page_size == 64, "only support page size 64"

        # NOTE(dark): this support extend/decode/decode+graph
        block_tables = metadata.get_page_table_64()

        max_seq_len = block_tables.shape[1] * page_size
        kv_cache_fp8 = forward_batch.token_to_kv_pool.get_index_k_with_scale_buffer(
            layer_id=layer_id
        )

        blocksize = page_size
        seqlens_32 = metadata.get_seqlens_int32()
        # NOTE(dark): 132 is SM count on H200/B200, not magic number
        schedule_metadata = deep_gemm.get_paged_mqa_logits_metadata(
            seqlens_32, blocksize, self.sm_count
        )

        assert len(q_fp8.shape) == 3
        q_fp8 = q_fp8.unsqueeze(1)  # the next_n dim is 1 now
        assert len(kv_cache_fp8.shape) == 2
        block_kv = 64
        num_heads_kv = 1
        head_dim_with_sf = 132
        kv_cache_fp8 = kv_cache_fp8.view(
            kv_cache_fp8.shape[0], block_kv, num_heads_kv, head_dim_with_sf
        )
        assert len(weights.shape) == 3
        weights = weights.squeeze(2)

        logits = deep_gemm.fp8_paged_mqa_logits(
            q_fp8,
            kv_cache_fp8,
            weights,
            seqlens_32,
            block_tables,
            schedule_metadata,
            max_seq_len,
            clean_logits=False,
        )

        # NOTE(dark): logits should be cleaned in topk_transform
        topk_result = metadata.topk_transform(logits, self.index_topk)
        return topk_result

    def _get_topk_ragged(
        self,
        forward_batch: ForwardBatch,
        layer_id: int,
        q_fp8: torch.Tensor,
        weights: torch.Tensor,
        metadata: BaseIndexerMetadata,
    ) -> torch.Tensor:
        if TYPE_CHECKING:
            assert isinstance(forward_batch.token_to_kv_pool, NSATokenToKVPool)

        page_size = forward_batch.token_to_kv_pool.page_size
        assert page_size == 64, "only support page size 64"
        assert len(weights.shape) == 3
        weights = weights.squeeze(-1)
        k_fp8_list = []
        k_scale_list = []
        ks_list = []
        offset = 0

        block_tables = metadata.get_page_table_64()

        assert (
            forward_batch.seq_lens_cpu is not None
            and forward_batch.extend_seq_lens_cpu is not None
        )

        for i in range(forward_batch.batch_size):
            seq_len = forward_batch.seq_lens_cpu[i].item()
            assert isinstance(seq_len, int)
            k_fp8 = forward_batch.token_to_kv_pool.get_index_k_continuous(
                layer_id,
                seq_len,
                block_tables[i],
            )
            k_scale = forward_batch.token_to_kv_pool.get_index_k_scale_continuous(
                layer_id,
                seq_len,
                block_tables[i],
            )
            extend_seq_len = forward_batch.extend_seq_lens_cpu[i]
            ks = torch.full((extend_seq_len,), offset, dtype=torch.int32, device="cuda")
            k_fp8_list.append(k_fp8)
            k_scale_list.append(k_scale)
            ks_list.append(ks)
            offset += extend_seq_len

        k_fp8 = torch.cat(k_fp8_list, dim=0).view(torch.float8_e4m3fn)
        k_scale = torch.cat(k_scale_list, dim=0).view(torch.float32).squeeze(-1)
        kv_fp8 = (k_fp8, k_scale)
        ks = torch.cat(ks_list, dim=0)
        seq_lens_expanded = metadata.get_seqlens_expanded()
        ke = ks + seq_lens_expanded

        logits = deep_gemm.fp8_mqa_logits(
            q_fp8,
            kv_fp8,
            weights,
            ks,
            ke,
            clean_logits=False,
        )

        assert logits.shape[0] == len(seq_lens_expanded)
        topk_result = metadata.topk_transform(logits, self.index_topk)

        return topk_result

    def forward_indexer_bs_1(
        self,
        q_fp8: torch.Tensor,
        weights: torch.Tensor,
        forward_batch: ForwardBatch,
        topk: int,
        layer_id: int,
    ) -> Optional[torch.Tensor]:
        if not is_npu():
            from sglang.srt.layers.attention.nsa.tilelang_kernel import fp8_index

        page_size = forward_batch.token_to_kv_pool.page_size
        assert page_size == 64, "only support page size 64"

        assert len(weights.shape) == 3
        weights = weights.squeeze(-1)

        # logits = deep_gemm.fp8_mqa_logits(q_fp8, kv_fp8, weights, ks, ke)
        k_fp8_list = []
        k_scale_list = []

        topk_indices_list = []

        block_tables = forward_batch.req_to_token_pool.req_to_token[
            forward_batch.req_pool_indices, :
        ]
        strided_indices = torch.arange(
            0, block_tables.shape[-1], page_size, device="cuda"
        )
        block_tables = block_tables[:, strided_indices] // page_size

        q_len_start = 0

        for i in range(forward_batch.batch_size):
            seq_len = forward_batch.seq_lens[i].item()
            q_len = (
                forward_batch.extend_seq_lens_cpu[i]
                if forward_batch.forward_mode.is_extend()
                else 1
            )
            q_len_end = q_len_start + q_len

            q_fp8_partial = q_fp8[q_len_start:q_len_end]
            q_fp8_partial = q_fp8_partial.unsqueeze(0).contiguous()

            weights_partial = weights[q_len_start:q_len_end]
            weights_partial = weights_partial.squeeze(-1).unsqueeze(0).contiguous()

            k_fp8 = forward_batch.token_to_kv_pool.get_index_k_continuous(
                layer_id,
                seq_len,
                block_tables[i],
            )
            k_scale = forward_batch.token_to_kv_pool.get_index_k_scale_continuous(
                layer_id,
                seq_len,
                block_tables[i],
            )

            k_fp8 = k_fp8.view(torch.float8_e4m3fn).unsqueeze(0).contiguous()
            k_scale = k_scale.view(torch.float32).squeeze(-1).unsqueeze(0).contiguous()

            index_score = fp8_index(
                q_fp8_partial,
                weights_partial,
                k_fp8,
                k_scale,
            )
            end_pos = seq_len
            topk_indices = index_score.topk(min(topk, end_pos), dim=-1)[1].squeeze(0)

            pad_len = align(topk_indices.shape[-1], 2048) - topk_indices.shape[-1]
            topk_indices = torch.nn.functional.pad(
                topk_indices, (0, pad_len), "constant", -1
            )

            topk_indices_list.append(topk_indices)

            q_len_start = q_len_end

        topk_indices = torch.cat(topk_indices_list, dim=0)

        return topk_indices

    def forward_indexer(
        self,
        q_fp8: torch.Tensor,
        weights: torch.Tensor,
        forward_batch: ForwardBatch,
        topk: int,
        layer_id: int,
    ) -> Optional[torch.Tensor]:
        return self.forward_indexer_bs_1(q_fp8, weights, forward_batch, topk, layer_id)

    def _forward(
        self,
        x: torch.Tensor,
        q_lora: torch.Tensor,
        positions: torch.Tensor,
        forward_batch: ForwardBatch,
        layer_id: int,
    ) -> Optional[torch.Tensor]:
508
        if is_hip():
fzyzcjy's avatar
fzyzcjy committed
509
            from sglang.srt.layers.attention.nsa.tilelang_kernel import act_quant
510
511
        elif not is_npu():
            from sglang.srt.layers.attention.nsa.triton_kernel import act_quant
fzyzcjy's avatar
fzyzcjy committed
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766

        if TYPE_CHECKING:
            assert isinstance(forward_batch.token_to_kv_pool, NSATokenToKVPool)

        metadata = forward_batch.attn_backend.get_indexer_metadata(
            layer_id, forward_batch
        )

        enable_dual_stream = (
            NSA_DUAL_STREAM
            and self.alt_stream is not None
            and get_is_capture_mode()
            and q_lora.shape[0] > 0
            and q_lora.shape[0] <= DUAL_STREAM_TOKEN_THRESHOLD
        )

        # skip NSA if attention backend choose to skip this batch
        if metadata is None:
            return None

        if not NSA_USE_REAL_INDEXER:  # temporary
            return self._forward_fake(x, q_lora, positions, forward_batch, layer_id)

        query, key = self._get_q_k_bf16(q_lora, x, positions, enable_dual_stream)

        if enable_dual_stream:
            current_stream = torch.cuda.current_stream()
            self.alt_stream.wait_stream(current_stream)

            q_fp8, q_scale = act_quant(query, self.block_size, self.scale_fmt)
            with torch.cuda.stream(self.alt_stream):
                k_fp8, k_scale = act_quant(key, self.block_size, self.scale_fmt)
            current_stream.wait_stream(self.alt_stream)
        else:
            q_fp8, q_scale = act_quant(query, self.block_size, self.scale_fmt)
            k_fp8, k_scale = act_quant(key, self.block_size, self.scale_fmt)

        # k_fp8: (seq_len, head_dim) fp8_e4m3fn
        # k_buffer: (num_total_tokens + page_size, head_dim) fp8_e4m3fn
        # k_scale: (seq_len, head_dim // block_size = 1) fp8_e4m3fn
        # k_scale_cache: (num_total_tokens + page_size, head_dim // block_size = 1) fp8_e4m3fn
        forward_batch.token_to_kv_pool.set_index_k_and_scale_buffer(
            layer_id=layer_id,
            loc=forward_batch.out_cache_loc,
            index_k=k_fp8,
            index_k_scale=k_scale,
        )

        weights = self._get_logits_head_gate(x, q_scale)

        if is_cuda():
            assert forward_batch.seq_lens_cpu is not None
            if len(forward_batch.seq_lens_cpu) == 0:
                # this seems b/c max-pad, no worries?
                # if x.shape[0] != 0:
                #     print(
                #         "HACK: seq_lens empty but x not empty, hackily return all-invalid topk_result"
                #     )
                return torch.full(
                    (x.shape[0], self.index_topk), -1, dtype=torch.int, device="cuda"
                )

            if forward_batch.forward_mode.is_decode_or_idle():
                topk_result = self._get_topk_paged(
                    forward_batch, layer_id, q_fp8, weights, metadata
                )
            else:
                topk_result = self._get_topk_ragged(
                    forward_batch, layer_id, q_fp8, weights, metadata
                )
        else:
            topk_result = self.forward_indexer(
                q_fp8.contiguous(),
                weights,
                forward_batch,
                topk=self.index_topk,
                layer_id=layer_id,
            )

        return topk_result

    def forward_cuda(
        self,
        x: torch.Tensor,
        q_lora: torch.Tensor,
        positions: torch.Tensor,
        forward_batch: ForwardBatch,
        layer_id: int,
    ) -> Optional[torch.Tensor]:
        return self._forward(x, q_lora, positions, forward_batch, layer_id)

    def forward_npu(
        self,
        x: torch.Tensor,
        q_lora: torch.Tensor,
        positions: torch.Tensor,
        forward_batch: ForwardBatch,
        layer_id: int,
    ) -> torch.Tensor:
        import custom_ops
        import torch_npu

        from sglang.srt.layers.dp_attention import (
            get_attention_tp_rank,
            get_attention_tp_size,
        )
        from sglang.srt.utils import get_bool_env_var

        if forward_batch.attn_backend.forward_metadata.seq_lens_cpu_int is None:
            actual_seq_lengths_kv = forward_batch.attn_backend.forward_metadata.seq_lens
        else:
            actual_seq_lengths_kv = (
                forward_batch.attn_backend.forward_metadata.seq_lens_cpu_int
            )
        enable_index_cp = (
            get_bool_env_var("SGLANG_USE_AG_AFTER_QLORA") and layer_id >= 4
        )
        is_prefill = forward_batch.forward_mode.is_extend()

        attention_tp_rank = get_attention_tp_rank()
        attention_tp_size = get_attention_tp_size()

        cos_sin = self.rotary_emb.cos_sin_cache[positions]
        cos, sin = cos_sin.chunk(2, dim=-1)
        cos = cos.repeat(1, 2).view(-1, 1, 1, self.rope_head_dim)
        sin = sin.repeat(1, 2).view(-1, 1, 1, self.rope_head_dim)
        if is_prefill and enable_index_cp:
            slice_length = cos.shape[0] // attention_tp_size
            cos = cos[
                slice_length
                * attention_tp_rank : slice_length
                * (attention_tp_rank + 1)
            ]
            sin = sin[
                slice_length
                * attention_tp_rank : slice_length
                * (attention_tp_rank + 1)
            ]

        slot_mapping = forward_batch.out_cache_loc
        block_table = forward_batch.attn_backend.forward_metadata.block_tables

        bs = x.shape[0]

        q = self.wq_b(q_lora)[0]  # [bs, 1536] @ [1536, 64 * 128] = [bs, 64 * 128]
        q = q.view(bs, self.n_heads, self.head_dim)  # [bs, 64, 128]
        q_pe, q_nope = torch.split(
            q,
            [self.rope_head_dim, self.head_dim - self.rope_head_dim],
            dim=-1,
        )  # [bs, 64, 64 + 64]

        q_pe = q_pe.view(bs, self.n_heads, 1, self.rope_head_dim)
        q_pe = torch_npu.npu_interleave_rope(q_pe, cos, sin).view(
            bs, self.n_heads, self.rope_head_dim
        )  # [bs, n, d]
        q = torch.cat([q_pe, q_nope], dim=-1)

        k_proj = self.wk(x)[0]  # [b, s, 7168] @ [7168, 128] = [b, s, 128]
        k = self.k_norm(k_proj)
        k_pe, k_nope = torch.split(
            k,
            [self.rope_head_dim, self.head_dim - self.rope_head_dim],
            dim=-1,
        )  # [bs, 64 + 64]

        k_pe = k_pe.view(-1, 1, 1, self.rope_head_dim)
        k_pe = torch_npu.npu_interleave_rope(k_pe, cos, sin).view(
            bs, 1, self.rope_head_dim
        )  # [bs, 1, d]
        k = torch.cat([k_pe, k_nope.unsqueeze(1)], dim=-1)  # [bs, 1, 128]

        if is_prefill and enable_index_cp:
            k, local_k = (
                torch.empty(
                    (k.shape[0] * attention_tp_size, k.shape[1], k.shape[2]),
                    dtype=k.dtype,
                    device=k.device,
                ),
                k,
            )
            get_attention_tp_group().all_gather_into_tensor(k, local_k)

        forward_batch.token_to_kv_pool.set_index_k_buffer(layer_id, slot_mapping, k)

        indexer_input = {}
        if is_prefill:
            actual_seq_lengths_kv = forward_batch.seq_lens.to(device=q.device)
            actual_seq_lengths_q = forward_batch.seq_lens.cumsum(dim=0).to(
                device=q.device
            )
            if enable_index_cp:
                actual_seq_lengths_q -= bs * attention_tp_rank
                actual_seq_lengths_q = torch.max(
                    actual_seq_lengths_q,
                    torch.zeros_like(actual_seq_lengths_q).to(
                        device=actual_seq_lengths_q.device
                    ),
                )
                actual_seq_lengths_q = torch.min(
                    actual_seq_lengths_q,
                    torch.full(actual_seq_lengths_q.shape, bs).to(
                        device=actual_seq_lengths_q.device
                    ),
                )

        else:
            if forward_batch.attn_backend.forward_metadata.actual_seq_lengths_q is None:
                actual_seq_lengths_q = torch.tensor(
                    [1 + i * 1 for i in range(bs)], dtype=torch.int32, device=k.device
                )
            else:
                actual_seq_lengths_q = (
                    forward_batch.attn_backend.forward_metadata.actual_seq_lengths_q
                )

        past_key_states = forward_batch.token_to_kv_pool.get_index_k_buffer(layer_id)

        x = x.view(-1, self.hidden_size)
        weights = self.weights_proj(x)[0]
        block_table = (
            block_table[: actual_seq_lengths_q.size()[0]] if is_prefill else block_table
        )

        topk_indices = torch.ops.custom.npu_lightning_indexer(
            query=q.view(-1, self.n_heads, self.head_dim),
            key=past_key_states,
            weights=weights,
            actual_seq_lengths_query=actual_seq_lengths_q.to(torch.int32),
            actual_seq_lengths_key=actual_seq_lengths_kv.to(k.device).to(torch.int32),
            block_table=block_table,
            layout_query="TND",
            layout_key="PA_BSND",
            sparse_count=self.index_topk,
            sparse_mode=3,
        )

        if is_prefill and enable_index_cp:
            topk_indices, local_topk_indices = (
                torch.empty(
                    (
                        topk_indices.shape[0] * attention_tp_size,
                        topk_indices.shape[1],
                        topk_indices.shape[2],
                    ),
                    dtype=topk_indices.dtype,
                    device=topk_indices.device,
                ),
                topk_indices,
            )
            get_attention_tp_group().all_gather_into_tensor(
                topk_indices, local_topk_indices
            )

        return topk_indices