"vscode:/vscode.git/clone" did not exist on "27af01700bff4b8758a8c55a0747c508f4de5944"
test_eagle_infer_b.py 14.3 KB
Newer Older
1
import json
2
import os
3
import random
4
import threading
5
import time
6
import unittest
7
8
from concurrent.futures import ThreadPoolExecutor
from functools import partial
9
from types import SimpleNamespace
10

11
import numpy as np
12
import requests
13
import torch
14

15
from sglang.srt.utils import kill_process_tree
16
from sglang.test.few_shot_gsm8k import run_eval
17
from sglang.test.test_utils import (
18
19
    DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
    DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
20
21
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
22
    CustomTestCase,
23
    popen_launch_server,
24
    run_logprob_check,
25
)
26

27
28
29
torch_dtype = torch.float16
prefill_tolerance = 5e-2
decode_tolerance: float = 5e-2
30

31

32
class TestEAGLEServer(CustomTestCase):
33
34
35
36
37
38
39
40
    PROMPTS = [
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nToday is a sunny day and I like[/INST]"
        '[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nWhat are the mental triggers in Jeff Walker\'s Product Launch Formula and "Launch" book?[/INST]',
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nSummarize Russell Brunson's Perfect Webinar Script...[/INST]",
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nwho are you?[/INST]",
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nwhere are you from?[/INST]",
    ]

41
42
43
44
    @classmethod
    def setUpClass(cls):
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
45
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
46
47
48
49
50
51
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
52
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
53
                "--speculative-num-steps",
54
                5,
55
                "--speculative-eagle-topk",
56
                8,
57
                "--speculative-num-draft-tokens",
58
                64,
59
                "--mem-fraction-static",
60
                0.7,
61
                "--chunked-prefill-size",
62
63
64
                128,
                "--max-running-requests",
                8,
65
66
67
68
69
70
71
            ],
        )

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

72
73
    def send_request(self):
        time.sleep(random.uniform(0, 2))
74
        for prompt in self.PROMPTS:
75
76
77
78
79
80
81
82
83
84
85
86
            url = self.base_url + "/generate"
            data = {
                "text": prompt,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": 1024,
                },
            }
            response = requests.post(url, json=data)
            assert response.status_code == 200

    def send_requests_abort(self):
87
        for prompt in self.PROMPTS:
88
89
90
91
92
93
94
95
96
97
98
            try:
                time.sleep(random.uniform(0, 2))
                url = self.base_url + "/generate"
                data = {
                    "model": "base",
                    "text": prompt,
                    "sampling_params": {
                        "temperature": 0,
                        "max_new_tokens": 1024,
                    },
                }
99
                # set timeout = 1s, mock disconnected
100
101
102
103
104
105
                requests.post(url, json=data, timeout=1)
            except Exception as e:
                print(e)
                pass

    def test_request_abort(self):
106
        concurrency = 4
107
108
        threads = [
            threading.Thread(target=self.send_request) for _ in range(concurrency)
109
        ] + [
110
            threading.Thread(target=self.send_requests_abort)
111
112
            for _ in range(concurrency)
        ]
113
        for worker in threads:
114
            worker.start()
115
        for p in threads:
116
117
            p.join()

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    def test_max_token_one(self):
        requests.get(self.base_url + "/flush_cache")

        args = SimpleNamespace(
            num_shots=5,
            data_path=None,
            num_questions=200,
            max_new_tokens=1,
            parallel=128,
            host="http://127.0.0.1",
            port=int(self.base_url.split(":")[-1]),
        )

        # Just run and check it does not hang
        metrics = run_eval(args)
        self.assertGreater(metrics["output_throughput"], 50)

135
    def test_gsm8k(self):
136
        requests.get(self.base_url + "/flush_cache")
137

138
139
140
141
142
143
144
145
146
        args = SimpleNamespace(
            num_shots=5,
            data_path=None,
            num_questions=200,
            max_new_tokens=512,
            parallel=128,
            host="http://127.0.0.1",
            port=int(self.base_url.split(":")[-1]),
        )
147

148
149
150
151
        metrics = run_eval(args)
        print(f"{metrics=}")
        self.assertGreater(metrics["accuracy"], 0.20)

152
        server_info = requests.get(self.base_url + "/get_server_info").json()
153
154
155
        avg_spec_accept_length = server_info["internal_states"][0][
            "avg_spec_accept_length"
        ]
156
        print(f"{avg_spec_accept_length=}")
157
158
159
160
161
162
163

        speculative_eagle_topk = server_info["speculative_eagle_topk"]

        if speculative_eagle_topk == 1:
            self.assertGreater(avg_spec_accept_length, 2.5)
        else:
            self.assertGreater(avg_spec_accept_length, 3.5)
164

165
166
        # Wait a little bit so that the memory check happens.
        time.sleep(4)
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    def test_logprob_start_len(self):
        logprob_start_len = 4
        new_tokens = 4
        prompts = [
            "I have a very good idea on",
            "Today is a sunndy day and",
        ]

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": prompts,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": new_tokens,
                },
                "return_logprob": True,
                "top_logprobs_num": 5,
                "logprob_start_len": logprob_start_len,
            },
        )
        response_json = response.json()
        print(json.dumps(response_json, indent=2))

        for res in response_json:
            self.assertEqual(
                res["meta_info"]["prompt_tokens"],
                logprob_start_len + len(res["meta_info"]["input_token_logprobs"]),
            )

            self.assertEqual(res["meta_info"]["completion_tokens"], new_tokens)
            self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), new_tokens)

    def test_logprob_match(self):
        """Test the output logprobs are close to the input logprobs if we run a prefill again."""

        def run_generate(
            prompt, return_logprob=False, max_new_tokens=512, logprob_start_len=-1
        ):

            if isinstance(prompt, str):
                prompt_kwargs = {"text": prompt}
            else:
                prompt_kwargs = {"input_ids": prompt}

            response = requests.post(
                self.base_url + "/generate",
                json={
                    **prompt_kwargs,
                    "sampling_params": {
                        "temperature": 1.0,
                        "max_new_tokens": max_new_tokens,
                        "ignore_eos": True,
                    },
                    "return_logprob": return_logprob,
                    "return_text_in_logprobs": True,
                    "logprob_start_len": logprob_start_len,
                },
            )
            return response.json()

        prompt = "I have a very good idea on how to"

        gen = run_generate(prompt, return_logprob=True, logprob_start_len=0)
        output_logprobs = np.array(
            [x[0] for x in gen["meta_info"]["output_token_logprobs"]]
        )
        num_prompts_tokens = gen["meta_info"]["prompt_tokens"]

        input_tokens = [x[1] for x in gen["meta_info"]["input_token_logprobs"]]
        output_tokens = [x[1] for x in gen["meta_info"]["output_token_logprobs"]]

        new_prompt = input_tokens + output_tokens
        score = run_generate(
            new_prompt, return_logprob=True, logprob_start_len=0, max_new_tokens=0
        )
        output_logprobs_score = np.array(
            [
                x[0]
                for x in score["meta_info"]["input_token_logprobs"][num_prompts_tokens:]
            ]
        )

        print(f"{output_logprobs[-10:]=}")
        print(f"{output_logprobs_score[-10:]=}")

        diff = np.abs(output_logprobs - output_logprobs_score)
        max_diff = np.max(diff)
        self.assertLess(max_diff, 0.25)

    def test_logprob_mixed(self):
        args = []
        temperature = 0
        # input_len, output_len, temperature, logprob_start_len, return_logprob, top_logprobs_num
        # Llama 2 context length seems to be only 2k, so we can only test small length.
        for input_len in [200, 500, 1000, 2000]:
            for output_len in [4, 8]:
                for logprob_start_len in [0, 100, 300, 800, 1998]:
                    for return_logprob in [True, False]:
                        for top_logprobs_num in [0, 5]:

                            if logprob_start_len >= input_len:
                                continue

                            args.append(
                                (
                                    input_len,
                                    output_len,
                                    temperature,
                                    logprob_start_len,
                                    return_logprob,
                                    top_logprobs_num,
                                )
                            )

        random.shuffle(args)

        func = partial(run_logprob_check, self)
        with ThreadPoolExecutor(8) as executor:
            list(executor.map(func, args))

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    def run_decode(self, sampling_params):
        return_logprob = True
        top_logprobs_num = 5
        return_text = True
        n = 1

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": "Human: Write a travel blog post to Hawaii.\n\nAssistant:",
                "sampling_params": {
                    "max_new_tokens": 48,
                    "n": n,
                    "temperature": 0.7,
                    **sampling_params,
                },
                "return_logprob": return_logprob,
                "top_logprobs_num": top_logprobs_num,
                "return_text_in_logprobs": return_text,
                "logprob_start_len": 0,
            },
        )
        self.assertEqual(response.status_code, 200)
        print(json.dumps(response.json()))
        print("=" * 100)

    def test_penalty_mixed(self):
        args = [
            {},
            {},
            {},
            {"frequency_penalty": 2},
            {"presence_penalty": 1},
            {"min_new_tokens": 16},
            {"frequency_penalty": 0.2},
            {"presence_penalty": 0.4},
            {"min_new_tokens": 8},
            {"frequency_penalty": 0.4, "presence_penalty": 0.8},
            {"frequency_penalty": 0.4, "min_new_tokens": 12},
            {"presence_penalty": 0.8, "min_new_tokens": 12},
            {"presence_penalty": -0.3, "frequency_penalty": 1.3, "min_new_tokens": 32},
            {"presence_penalty": 0.3, "frequency_penalty": -1.3, "min_new_tokens": 32},
        ]
        random.shuffle(args * 5)
        with ThreadPoolExecutor(8) as executor:
            list(executor.map(self.run_decode, args))

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
    def test_constrained_decoding(self):
        messages = [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": "Give me a json"},
        ]

        response = requests.post(
            self.base_url + "/v1/chat/completions",
            json={
                "model": DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
                "messages": messages,
                "temperature": 0,
                "response_format": {"type": "json_object"},
            },
        )
        self.assertEqual(response.status_code, 200)
        res = response.json()

        # Validate response structure
        self.assertIn("choices", res)
        self.assertEqual(len(res["choices"]), 1)
        self.assertIn("message", res["choices"][0])
        self.assertIn("content", res["choices"][0]["message"])

        # Validate JSON content
        content_json = res["choices"][0]["message"]["content"]
        is_valid_json = True
        try:
            content = json.loads(content_json)
            self.assertIsInstance(content, dict)
        except Exception:
            print(f"parse JSON failed: {content_json}")
            is_valid_json = False
        self.assertTrue(is_valid_json)

371

372
class TestEAGLERetract(TestEAGLEServer):
373
374
    @classmethod
    def setUpClass(cls):
375
376
        # These config helps find a leak.
        os.environ["SGLANG_CI_SMALL_KV_SIZE"] = "4500"
377
378
379
380
381
382
383
384
385
386
387
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
                "--speculative-num-steps",
388
                5,
389
                "--speculative-eagle-topk",
390
                8,
391
                "--speculative-num-draft-tokens",
392
                64,
393
                "--mem-fraction-static",
394
                0.7,
395
                "--chunked-prefill-size",
396
                128,
397
                "--max-running-requests",
398
                64,
399
400
401
402
            ],
        )


403
404
405
406
407
408
409
410
411
412
413
414
415
416
class TestEAGLEServerTriton(TestEAGLEServer):
    @classmethod
    def setUpClass(cls):
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
                "--speculative-num-steps",
417
                5,
418
                "--speculative-eagle-topk",
419
                8,
420
                "--speculative-num-draft-tokens",
421
                64,
422
                "--mem-fraction-static",
423
                0.7,
424
425
                "--attention-backend",
                "triton",
426
427
                "--max-running-requests",
                8,
428
429
430
431
            ],
        )


432
433
if __name__ == "__main__":
    unittest.main()