"docs/source/en/training/text2image.mdx" did not exist on "5a38033de4824c8d5d9b2856776df45592a8e825"
utils.h 19.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/* Copyright 2025 SGLang Team. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

16
#pragma once
17

18
#include <ATen/Tensor.h>
19
#include <cuda_runtime.h>
20
21
#include <torch/all.h>

22
23
24
25
#ifdef USE_ROCM
#include <hip/hip_runtime.h>
#endif

26
27
28
29
30
31
32
33
34
35
36
37
38
39
#ifdef USE_ROCM
// Adapted from flashinfer-rocm [PR#491](https://github.com/flashinfer-ai/flashinfer/pull/491)
#define _DISPATCH_CASE_F16(c_type, ...) \
  case at::ScalarType::Half: {          \
    using c_type = __half;              \
    return __VA_ARGS__();               \
  }

#define _DISPATCH_CASE_BF16(c_type, ...) \
  case at::ScalarType::BFloat16: {       \
    using c_type = __hip_bfloat16;       \
    return __VA_ARGS__();                \
  }
#endif  // USE_ROCM
40

41
#ifndef USE_ROCM
42
43
44
45
46
47
48
49
50
// Adapt from FlashInfer
#ifdef FLASHINFER_ENABLE_F16
#define _DISPATCH_CASE_F16(c_type, ...) \
  case at::ScalarType::Half: {          \
    using c_type = nv_half;             \
    return __VA_ARGS__();               \
  }
#else
#define _DISPATCH_CASE_F16(c_type, ...)
51
#endif  // FLASHINFER_ENABLE_F16
52

53
54
55
56
57
58
59
60
#ifdef FLASHINFER_ENABLE_BF16
#define _DISPATCH_CASE_BF16(c_type, ...) \
  case at::ScalarType::BFloat16: {       \
    using c_type = nv_bfloat16;          \
    return __VA_ARGS__();                \
  }
#else
#define _DISPATCH_CASE_BF16(c_type, ...)
61
#endif  // FLASHINFER_ENABLE_BF16
62
63
64
65
66
67
68
69
70

#ifdef FLASHINFER_ENABLE_FP8_E4M3
#define _DISPATCH_CASE_FP8_E4M3(c_type, ...) \
  case at::ScalarType::Float8_e4m3fn: {      \
    using c_type = __nv_fp8_e4m3;            \
    return __VA_ARGS__();                    \
  }
#else
#define _DISPATCH_CASE_FP8_E4M3(c_type, ...)
71
#endif  // FLASHINFER_ENABLE_FP8_E4M3
72
73
74
75
76
77
78
79
80

#ifdef FLASHINFER_ENABLE_FP8_E5M2
#define _DISPATCH_CASE_FP8_E5M2(c_type, ...) \
  case at::ScalarType::Float8_e5m2: {        \
    using c_type = __nv_fp8_e5m2;            \
    return __VA_ARGS__();                    \
  }
#else
#define _DISPATCH_CASE_FP8_E5M2(c_type, ...)
81
#endif  // FLASHINFER_ENABLE_FP8_E5M2
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

#define DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(pytorch_dtype, c_type, ...)                 \
  [&]() -> bool {                                                                        \
    switch (pytorch_dtype) {                                                             \
      _DISPATCH_CASE_F16(c_type, __VA_ARGS__)                                            \
      _DISPATCH_CASE_BF16(c_type, __VA_ARGS__)                                           \
      default:                                                                           \
        std::ostringstream oss;                                                          \
        oss << __PRETTY_FUNCTION__ << " failed to dispatch data type " << pytorch_dtype; \
        TORCH_CHECK(false, oss.str());                                                   \
        return false;                                                                    \
    }                                                                                    \
  }()

#define DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP8(pytorch_dtype, c_type, ...)                      \
  [&]() -> bool {                                                                            \
    switch (pytorch_dtype) {                                                                 \
      _DISPATCH_CASE_FP8_E4M3(c_type, __VA_ARGS__)                                           \
      _DISPATCH_CASE_FP8_E5M2(c_type, __VA_ARGS__)                                           \
      default:                                                                               \
        std::ostringstream oss;                                                              \
        oss << __PRETTY_FUNCTION__ << " failed to dispatch fp8 data type " << pytorch_dtype; \
        TORCH_CHECK(false, oss.str());                                                       \
        return false;                                                                        \
    }                                                                                        \
  }()

#define DISPATCH_PYTORCH_DTYPE_TO_CTYPE(pytorch_dtype, c_type, ...)                      \
  [&]() -> bool {                                                                        \
    switch (pytorch_dtype) {                                                             \
      _DISPATCH_CASE_F16(c_type, __VA_ARGS__)                                            \
      _DISPATCH_CASE_BF16(c_type, __VA_ARGS__)                                           \
      _DISPATCH_CASE_FP8_E4M3(c_type, __VA_ARGS__)                                       \
      _DISPATCH_CASE_FP8_E5M2(c_type, __VA_ARGS__)                                       \
      default:                                                                           \
        std::ostringstream oss;                                                          \
        oss << __PRETTY_FUNCTION__ << " failed to dispatch data type " << pytorch_dtype; \
        TORCH_CHECK(false, oss.str());                                                   \
        return false;                                                                    \
    }                                                                                    \
  }()

#define _DISPATCH_SWITCH(var_name, cond, ...)                                           \
  [&]() -> bool {                                                                       \
    switch (cond) {                                                                     \
      __VA_ARGS__                                                                       \
      default:                                                                          \
        std::ostringstream oss;                                                         \
        oss << __PRETTY_FUNCTION__ << " failed to dispatch " var_name " " << int(cond); \
        TORCH_CHECK(false, oss.str());                                                  \
        return false;                                                                   \
    }                                                                                   \
  }()

#define _DISPATCH_SWITCH_U16x2(var1_name, var2_name, cond1, cond2, ...)                                             \
  [&]() -> bool {                                                                                                   \
    switch (pack_u16(cond1, cond2)) {                                                                               \
      __VA_ARGS__                                                                                                   \
      default:                                                                                                      \
        std::ostringstream oss;                                                                                     \
        oss << __PRETTY_FUNCTION__ << " failed to dispatch (" var1_name ", " var2_name "): (" << int(cond1) << ", " \
            << int(cond2) << ")";                                                                                   \
        TORCH_CHECK(false, oss.str());                                                                              \
        return false;                                                                                               \
    }                                                                                                               \
  }()

#define _DISPATCH_CASE(case_expr, case_var, ...) \
  case case_expr: {                              \
    constexpr auto case_var = case_expr;         \
    return __VA_ARGS__();                        \
  }

#define _DISPATCH_CASE_U16x2(case_expr1, case_expr2, case_var1, case_var2, ...) \
  case pack_u16(case_expr1, case_expr2): {                                      \
    constexpr auto case_var1 = case_expr1;                                      \
    constexpr auto case_var2 = case_expr2;                                      \
    return __VA_ARGS__();                                                       \
  }

#define DISPATCH_BOOL(expr, const_expr, ...) \
  [&]() -> bool {                            \
    if (expr) {                              \
      constexpr bool const_expr = true;      \
      return __VA_ARGS__();                  \
    } else {                                 \
      constexpr bool const_expr = false;     \
      return __VA_ARGS__();                  \
    }                                        \
  }()

inline void check_shape(const at::Tensor& a, const at::Tensor& b, const char* a_name, const char* b_name) {
  TORCH_CHECK(a.dim() == b.dim(), a_name, ".dim() != ", b_name, ".dim(). ", a.dim(), " vs ", b.dim());
  for (int i = 0; i < a.dim(); ++i) {
    TORCH_CHECK(a.size(i) == b.size(i), a_name, ".size(", i, ") != ", b_name, ".size(", i, ")");
  }
}

inline constexpr uint32_t pack_u16(uint16_t a, uint16_t b) {
  return (uint32_t(a) << 16) | uint32_t(b);
}

#define CHECK_GQA_HEAD_DIVISIBLE(num_qo_heads, num_kv_heads) \
  TORCH_CHECK(                                               \
      num_qo_heads % num_kv_heads == 0,                      \
      "num_qo_heads(",                                       \
      num_qo_heads,                                          \
      ") must be divisible by num_kv_heads(",                \
      num_kv_heads,                                          \
      ")")

#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")

#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_LAST_DIM_CONTIGUOUS(x) \
  TORCH_CHECK(x.strides()[x.strides().size() - 1] == 1, #x "must be contiguous at last dimension")

#define CHECK_INPUT(x) \
  CHECK_CUDA(x);       \
  CHECK_CONTIGUOUS(x)
#define CHECK_LAST_DIM_CONTIGUOUS_INPUT(x) \
  CHECK_CUDA(x);                           \
  CHECK_LAST_DIM_CONTIGUOUS(x)

#define CHECK_DIM(d, x) TORCH_CHECK(x.dim() == d, #x " must be a " #d "D tensor")

#define CHECK_SHAPE(a, b) check_shape(a, b, #a, #b)

#define CHECK_EQ(a, b) TORCH_CHECK((a) == (b), "CHECK_EQ(" #a ", " #b ") failed. ", a, " vs ", b)

#define CHECK_GE(a, b) TORCH_CHECK((a) >= (b), "CHECK_GE(" #a ", " #b ") failed. ", a, " vs ", b)

inline bool is_float8_tensor(const at::Tensor& tensor) {
  return tensor.scalar_type() == at::ScalarType::Float8_e4m3fn || tensor.scalar_type() == at::ScalarType::Float8_e5m2;
}
217
#endif  // USE_ROCM
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

struct cuda_error : public std::runtime_error {
  /**
   * @brief Constructs a `cuda_error` object with the given `message`.
   *
   * @param message The error char array used to construct `cuda_error`
   */
  cuda_error(const char* message) : std::runtime_error(message) {}
  /**
   * @brief Constructs a `cuda_error` object with the given `message` string.
   *
   * @param message The `std::string` used to construct `cuda_error`
   */
  cuda_error(std::string const& message) : cuda_error{message.c_str()} {}
};

#define CHECK_CUDA_SUCCESS(cmd)                                         \
  do {                                                                  \
    cudaError_t e = cmd;                                                \
    if (e != cudaSuccess) {                                             \
      std::stringstream _message;                                       \
      auto s = cudaGetErrorString(e);                                   \
      _message << std::string(s) + "\n" << __FILE__ << ':' << __LINE__; \
      throw cuda_error(_message.str());                                 \
    }                                                                   \
  } while (0)

#define CHECK_IS_CUDA(x) TORCH_CHECK(x.device().is_cuda(), #x " must be a CUDA tensor")
#define CHECK_IS_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_CUDA_INPUT(x) \
  CHECK_IS_CUDA(x);         \
  CHECK_IS_CONTIGUOUS(x)
Ke Bao's avatar
Ke Bao committed
250
251
252
253
254
255
256
257
258
259

inline int getSMVersion() {
  int device{-1};
  CHECK_CUDA_SUCCESS(cudaGetDevice(&device));
  int sm_major = 0;
  int sm_minor = 0;
  CHECK_CUDA_SUCCESS(cudaDeviceGetAttribute(&sm_major, cudaDevAttrComputeCapabilityMajor, device));
  CHECK_CUDA_SUCCESS(cudaDeviceGetAttribute(&sm_minor, cudaDevAttrComputeCapabilityMinor, device));
  return sm_major * 10 + sm_minor;
}
260

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
inline bool isDeviceType(const std::string& device_type) {
  int deviceCount;
  CHECK_CUDA_SUCCESS(cudaGetDeviceCount(&deviceCount));

  int device_id = -1;
  if (deviceCount >= 1) {
    CHECK_CUDA_SUCCESS(cudaGetDevice(&device_id));
  } else {
    return false;
  }

  cudaDeviceProp prop;
  CHECK_CUDA_SUCCESS(cudaGetDeviceProperties(&prop, device_id));
  if (device_type == std::string(prop.name)) {
    return true;
  }
  return false;
}

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
inline bool getBoolEnv(char const* name) {
  char const* env = std::getenv(name);
  return env && env[0] == '1' && env[1] == '\0';
}

inline bool getEnvEnablePDL() {
  static std::once_flag flag;
  static bool enablePDL = false;
  std::call_once(flag, [&]() {
    if (getSMVersion() >= 90) {
      // PDL will be enabled by setting the env variables `TRTLLM_ENABLE_PDL` to `1`
      enablePDL = getBoolEnv("TRTLLM_ENABLE_PDL");
    }
  });
  return enablePDL;
}

297
298
299
300
301
302
303
304
305
// SGLANG_SHFL_XOR_* adapted from https://github.com/vllm-project/vllm/blob/v0.7.3/csrc/cuda_compat.h#L19-L28
#ifndef USE_ROCM
#define SGLANG_SHFL_XOR_SYNC(mask, var, lane_mask) __shfl_xor_sync((mask), (var), (lane_mask))
#define SGLANG_SHFL_XOR_SYNC_WIDTH(mask, var, lane_mask, width) __shfl_xor_sync((mask), (var), (lane_mask), (width))
#else
#define SGLANG_SHFL_XOR_SYNC(mask, var, lane_mask) __shfl_xor((var), (lane_mask))
#define SGLANG_SHFL_XOR_SYNC_WIDTH(mask, var, lane_mask, width) __shfl_xor((var), (lane_mask), (width))
#endif

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#define DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FLOAT_FP16(pytorch_dtype, c_type, ...)           \
  [&]() -> bool {                                                                        \
    switch (pytorch_dtype) {                                                             \
      case at::ScalarType::Float: {                                                      \
        using c_type = float;                                                            \
        return __VA_ARGS__();                                                            \
      }                                                                                  \
        _DISPATCH_CASE_F16(c_type, __VA_ARGS__)                                          \
        _DISPATCH_CASE_BF16(c_type, __VA_ARGS__)                                         \
      default:                                                                           \
        std::ostringstream oss;                                                          \
        oss << __PRETTY_FUNCTION__ << " failed to dispatch data type " << pytorch_dtype; \
        TORCH_CHECK(false, oss.str());                                                   \
        return false;                                                                    \
    }                                                                                    \
  }()
322
323
324
325
326
327
328
329
330
331
332

#define DISPATCH_CASE_INTEGRAL_TYPES(...)              \
  AT_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__)  \
  AT_DISPATCH_CASE(at::ScalarType::Char, __VA_ARGS__)  \
  AT_DISPATCH_CASE(at::ScalarType::Short, __VA_ARGS__) \
  AT_DISPATCH_CASE(at::ScalarType::Int, __VA_ARGS__)   \
  AT_DISPATCH_CASE(at::ScalarType::Long, __VA_ARGS__)

#define DISPATCH_INTEGRAL_TYPES(TYPE, NAME, ...) \
  AT_DISPATCH_SWITCH(TYPE, NAME, DISPATCH_CASE_INTEGRAL_TYPES(__VA_ARGS__))

333
334
335
336
337
338
339
#define DISPATCH_CASE_FLOAT_TYPES(...)                 \
  AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
  AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__)  \
  AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__)

#define DISPATCH_FLOAT_TYPES(TYPE, NAME, ...) AT_DISPATCH_SWITCH(TYPE, NAME, DISPATCH_CASE_FLOAT_TYPES(__VA_ARGS__))

340
#define CEILDIV(x, y) (((x) + (y) - 1) / (y))
341
342

#ifndef USE_ROCM
maxiao1's avatar
maxiao1 committed
343
#define WARP_SIZE 64
344
#else
345
346
347
348
349
#if defined(__GFX9__) || !defined(__HIP_DEVICE_COMPILE__)
#define WARP_SIZE 64
#else
#define WARP_SIZE 32
#endif
350
351
#endif

352
#ifdef USE_ROCM
353

354
355
#include "hip/hip_math_def.h"
#include "hip/hip_vec_dtypes.h"
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

#else

template <typename srcDtype>
__device__ __forceinline__ float castToFloat(srcDtype val) {
  return static_cast<srcDtype>(val);
}

template <typename dstDtype>
__device__ __forceinline__ dstDtype castFromFloat(float val) {
  return static_cast<dstDtype>(val);
}

#endif

// add FP8 support
maxiao1's avatar
maxiao1 committed
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
// #ifndef USE_ROCM
// #include <c10/util/Float8_e4m3fn.h>
// using FP8_TYPE = c10::Float8_e4m3fn;
// C10_HOST_DEVICE constexpr auto FP8_E4M3_MAX = std::numeric_limits<FP8_TYPE>::max();
// #else  // USE_ROCM
// #if HIP_FP8_TYPE_FNUZ
// #include <c10/util/Float8_e4m3fnuz.h>
// using FP8_TYPE = c10::Float8_e4m3fnuz;
// constexpr auto FP8_E4M3_MAX = 224.0f;
// #else
// #if HIP_FP8_TYPE_E4M3
// #include <c10/util/Float8_e4m3fn.h>
// using FP8_TYPE = c10::Float8_e4m3fn;
// C10_HOST_DEVICE constexpr auto FP8_E4M3_MAX = std::numeric_limits<FP8_TYPE>::max();
// #else
// #error "fp8 is not supported in this processor (arch < gfx942)."
// #endif  // HIP_FP8_TYPE_E4M3
// #endif  // HIP_FP8_TYPE_FNUZ
// #endif  // USE_ROCM
391
392

#define FULL_MASK 0xffffffff
393
394

__device__ __forceinline__ float atomicMaxFloat(float* addr, float value) {
395
#ifndef USE_ROCM
396
397
398
399
  float old;
  old = (value >= 0) ? __int_as_float(atomicMax((int*)addr, __float_as_int(value)))
                     : __uint_as_float(atomicMin((unsigned int*)addr, __float_as_uint(value)));
  return old;
400
401
402
403
404
405
406
407
408
#else
  int* addr_as_i = (int*)addr;
  int old = *addr_as_i, assumed;
  do {
    assumed = old;
    old = atomicCAS(addr_as_i, assumed, __float_as_int(fmaxf(value, __int_as_float(assumed))));
  } while (assumed != old);
  return __int_as_float(old);
#endif
409
410
}

411
412
413
414
415
416
417
__device__ __forceinline__ float warpReduceMax(float value) {
  value = fmaxf(value, __shfl_xor_sync(FULL_MASK, value, 16));
  value = fmaxf(value, __shfl_xor_sync(FULL_MASK, value, 8));
  value = fmaxf(value, __shfl_xor_sync(FULL_MASK, value, 4));
  value = fmaxf(value, __shfl_xor_sync(FULL_MASK, value, 2));
  value = fmaxf(value, __shfl_xor_sync(FULL_MASK, value, 1));
  return value;
418
}
419

420
__device__ __forceinline__ float blockReduceMax(float value) {
421
422
423
424
  static __shared__ float warpLevelMaxs[WARP_SIZE];
  const int laneId = threadIdx.x % WARP_SIZE;
  const int warpId = threadIdx.x / WARP_SIZE;

425
  value = warpReduceMax(value);
426

427
  if (laneId == 0) warpLevelMaxs[warpId] = value;
428
429
  __syncthreads();

430
431
  value = (threadIdx.x < blockDim.x / WARP_SIZE) ? warpLevelMaxs[laneId] : 0;
  if (warpId == 0) value = warpReduceMax(value);
432

433
  return value;
434
}
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

// Pads to a multiple of `alignment` rows.
inline torch::Tensor pad_tensor(const torch::Tensor& tensor, int64_t alignment = 4, bool is_column_major = false) {
  int64_t rows = tensor.size(0);
  int64_t cols = tensor.size(1);
  int64_t pad_rows = (alignment - (rows % alignment)) % alignment;  // Compute padding size

  if (pad_rows == 0) {
    return tensor;  // Already aligned
  }

  torch::Tensor padding = torch::zeros({pad_rows, cols}, tensor.options());
  torch::Tensor tensor_padded = torch::cat({tensor, padding}, 0);  // Pad along rows

  // Ensure column-major layout
  if (is_column_major) {
    return tensor_padded.t().contiguous().t();
  }
  return tensor_padded;
}
455
456
457
458
459
460

// Get the next power of 2 of a number
inline uint32_t next_pow2(uint32_t x) noexcept {
  if (x <= 1) return 1;
  return 1u << (32 - __builtin_clz(x - 1));
}
461
462
463
464
465
466
467
468
469

/*
 * LDG Support
 */
#ifndef USE_ROCM
#define SGLANG_LDG(arg) __ldg(arg)
#else
#define SGLANG_LDG(arg) *(arg)
#endif