int8_gemm_kernel.cu 21.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/* Copyright 2025 SGLang Team. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

Ke Bao's avatar
Ke Bao committed
16
17
18
19
20
#include <ATen/cuda/CUDAContext.h>
#include <cutlass/cutlass.h>
#include <cutlass/epilogue/thread/linear_combination.h>
#include <cutlass/epilogue/threadblock/epilogue_with_visitor.h>
#include <cutlass/gemm/device/gemm.h>
Ke Bao's avatar
Ke Bao committed
21
#include <cutlass/gemm/device/gemm_universal_adapter.h>
Ke Bao's avatar
Ke Bao committed
22
23
#include <cutlass/numeric_types.h>

Ke Bao's avatar
Ke Bao committed
24
25
26
27
28
29
30
#include <cute/atom/mma_atom.hpp>
#include <cute/tensor.hpp>
#include <cutlass/epilogue/collective/collective_builder.hpp>
#include <cutlass/gemm/collective/collective_builder.hpp>
#include <cutlass/gemm/kernel/gemm_universal.hpp>
#include <cutlass/util/packed_stride.hpp>

Ke Bao's avatar
Ke Bao committed
31
32
33
#include "cutlass_extensions/epilogue/epilogue_per_row_per_col_scale.h"
#include "cutlass_extensions/gemm/gemm_universal_base_compat.h"
#include "cutlass_extensions/gemm/gemm_with_epilogue_visitor.h"
34
#include "utils.h"
Ke Bao's avatar
Ke Bao committed
35

Ke Bao's avatar
Ke Bao committed
36
37
using namespace cute;

38
39
40
41
42
43
44
45
46
47
48
49
50
51
template <
    typename ElementOutput,
    typename ArchTag,
    typename ThreadblockShape,
    typename WarpShape,
    typename InstructionShape,
    int NumStages>
void cutlass_int8_scaled_mm(
    torch::Tensor& out,
    const torch::Tensor& mat_a,
    const torch::Tensor& mat_b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const c10::optional<torch::Tensor>& bias) {
Ke Bao's avatar
Ke Bao committed
52
53
54
55
56
57
58
59
  using ElementAccumulator = int32_t;
  using ElementCompute = float;
  using ElementInputA = int8_t;
  using ElementInputB = int8_t;

  using OperatorClass = cutlass::arch::OpClassTensorOp;
  using ThreadblockSwizzle = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<8>;

60
61
  using DefaultGemmConf = cutlass::gemm::device::
      DefaultGemmConfiguration<OperatorClass, ArchTag, ElementInputA, ElementInputB, ElementOutput, ElementCompute>;
Ke Bao's avatar
Ke Bao committed
62
63
64
  using EpilogueOutputOp = typename DefaultGemmConf::EpilogueOutputOp;

  using GemmKernel_ = typename cutlass::gemm::kernel::DefaultGemm<
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
      ElementInputA,
      cutlass::layout::RowMajor,
      DefaultGemmConf::kAlignmentA,
      ElementInputB,
      cutlass::layout::ColumnMajor,
      DefaultGemmConf::kAlignmentB,
      ElementOutput,
      cutlass::layout::RowMajor,
      ElementAccumulator,
      OperatorClass,
      ArchTag,
      ThreadblockShape,
      WarpShape,
      InstructionShape,
      EpilogueOutputOp,
      ThreadblockSwizzle,
      NumStages,
      true,
      typename DefaultGemmConf::Operator>::GemmKernel;
Ke Bao's avatar
Ke Bao committed
84
85
86
87
88
89

  using AlphaColTileIterator = cutlass::epilogue::threadblock::PredicatedTileIterator<
      cutlass::epilogue::threadblock::OutputTileOptimalThreadMap<
          typename GemmKernel_::Epilogue::OutputTileIterator::ThreadMap::Shape,
          typename GemmKernel_::Epilogue::OutputTileIterator::ThreadMap::Count,
          GemmKernel_::Epilogue::OutputTileIterator::ThreadMap::kThreads,
90
91
          GemmKernel_::Epilogue::OutputTileIterator::kElementsPerAccess,
          cutlass::sizeof_bits<ElementOutput>::value>,
Ke Bao's avatar
Ke Bao committed
92
93
94
      ElementCompute>;

  using EpilogueVisitor = typename cutlass::epilogue::threadblock::EpilogueVisitorPerRowPerCol<
95
96
97
98
99
100
101
      ThreadblockShape,
      GemmKernel_::kThreadCount,
      AlphaColTileIterator,
      typename GemmKernel_::Epilogue::OutputTileIterator,
      ElementAccumulator,
      ElementCompute,
      EpilogueOutputOp>;
Ke Bao's avatar
Ke Bao committed
102

103
104
  using Epilogue = typename cutlass::epilogue::threadblock::
      EpilogueWithVisitorFromExistingEpilogue<EpilogueVisitor, typename GemmKernel_::Epilogue>::Epilogue;
Ke Bao's avatar
Ke Bao committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

  using GemmKernel =
      cutlass::gemm::kernel::GemmWithEpilogueVisitor<typename GemmKernel_::Mma, Epilogue, ThreadblockSwizzle>;

  using Gemm = cutlass::gemm::device::GemmUniversalBaseCompat<GemmKernel>;

  Gemm gemm_op;

  int m = mat_a.size(0);
  int k = mat_a.size(1);
  int n = mat_b.size(1);

  auto a_ptr = static_cast<ElementInputA*>(mat_a.data_ptr());
  auto b_ptr = static_cast<ElementInputB*>(mat_b.data_ptr());
  auto o_ptr = static_cast<ElementOutput*>(out.data_ptr());

  auto a_s_ptr = static_cast<ElementCompute*>(scales_a.data_ptr());
  auto b_s_ptr = static_cast<ElementCompute*>(scales_b.data_ptr());

  int64_t lda = mat_a.stride(0);
  int64_t ldb = mat_b.stride(1);
  int64_t ldd = out.stride(0);

  ElementOutput* bias_ptr = nullptr;
  int64_t ldc = 0;
  if (bias) {
    bias_ptr = static_cast<ElementOutput*>(bias->data_ptr());
  }

  typename EpilogueOutputOp::Params linearScalingParams;
  typename EpilogueVisitor::Arguments visitor_args{linearScalingParams};

137
138
  typename Gemm::Arguments args{
      {m, n, k}, {a_ptr, lda}, {b_ptr, ldb}, {b_s_ptr, 0}, {a_s_ptr, 0}, {bias_ptr, ldc}, {o_ptr, ldd}, visitor_args};
Ke Bao's avatar
Ke Bao committed
139

140
141
  auto workspace = torch::empty(
      gemm_op.get_workspace_size(args), torch::TensorOptions().dtype(torch::kUInt8).device(mat_a.device()));
Ke Bao's avatar
Ke Bao committed
142
143
144
145

  auto stream = at::cuda::getCurrentCUDAStream(mat_a.get_device());

  auto can_implement = gemm_op.can_implement(args);
146
147
148
149
  TORCH_CHECK(
      can_implement == cutlass::Status::kSuccess,
      "gemm cannot implement, error: ",
      cutlassGetStatusString(can_implement));
Ke Bao's avatar
Ke Bao committed
150
151

  auto status = gemm_op(args, workspace.data_ptr(), stream);
Ke Bao's avatar
Ke Bao committed
152
  TORCH_CHECK(status == cutlass::Status::kSuccess, "gemm executioin failed, error: ", cutlassGetStatusString(status));
Ke Bao's avatar
Ke Bao committed
153
154
155
}

template <typename ElementOutput, typename ArchTag, typename InstructionShape>
156
157
158
159
160
161
162
void sm75_dispatch_shape(
    torch::Tensor& out,
    const torch::Tensor& mat_a,
    const torch::Tensor& mat_b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const c10::optional<torch::Tensor>& bias) {
Ke Bao's avatar
Ke Bao committed
163
164
  int m = mat_a.size(0);
  if (m <= 32) {
165
166
167
168
169
170
171
    cutlass_int8_scaled_mm<
        ElementOutput,
        ArchTag,
        cutlass::gemm::GemmShape<32, 128, 64>,
        cutlass::gemm::GemmShape<32, 64, 64>,
        InstructionShape,
        2>(out, mat_a, mat_b, scales_a, scales_b, bias);
Ke Bao's avatar
Ke Bao committed
172
  } else if (m <= 64) {
173
174
175
176
177
178
179
    cutlass_int8_scaled_mm<
        ElementOutput,
        ArchTag,
        cutlass::gemm::GemmShape<64, 128, 128>,
        cutlass::gemm::GemmShape<64, 64, 64>,
        InstructionShape,
        2>(out, mat_a, mat_b, scales_a, scales_b, bias);
Ke Bao's avatar
Ke Bao committed
180
  } else if (m <= 256) {
181
182
183
184
185
186
187
    cutlass_int8_scaled_mm<
        ElementOutput,
        ArchTag,
        cutlass::gemm::GemmShape<128, 128, 128>,
        cutlass::gemm::GemmShape<64, 64, 64>,
        InstructionShape,
        2>(out, mat_a, mat_b, scales_a, scales_b, bias);
Ke Bao's avatar
Ke Bao committed
188
  } else {
189
190
191
192
193
194
195
    cutlass_int8_scaled_mm<
        ElementOutput,
        ArchTag,
        cutlass::gemm::GemmShape<128, 128, 64>,
        cutlass::gemm::GemmShape<64, 64, 64>,
        InstructionShape,
        2>(out, mat_a, mat_b, scales_a, scales_b, bias);
Ke Bao's avatar
Ke Bao committed
196
197
198
199
  }
}

template <typename ElementOutput, typename ArchTag, typename InstructionShape>
200
201
202
203
204
205
206
void sm80_dispatch_shape(
    torch::Tensor& out,
    const torch::Tensor& mat_a,
    const torch::Tensor& mat_b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const c10::optional<torch::Tensor>& bias) {
Ke Bao's avatar
Ke Bao committed
207
208
209
210
  int m = mat_a.size(0);
  int n = mat_b.size(1);
  if (m <= 16) {
    if (n <= 4096) {
211
212
213
214
215
216
217
      cutlass_int8_scaled_mm<
          ElementOutput,
          ArchTag,
          cutlass::gemm::GemmShape<16, 64, 128>,
          cutlass::gemm::GemmShape<16, 64, 64>,
          InstructionShape,
          6>(out, mat_a, mat_b, scales_a, scales_b, bias);
Ke Bao's avatar
Ke Bao committed
218
    } else {
219
220
221
222
223
224
225
      cutlass_int8_scaled_mm<
          ElementOutput,
          ArchTag,
          cutlass::gemm::GemmShape<16, 64, 128>,
          cutlass::gemm::GemmShape<16, 64, 64>,
          InstructionShape,
          5>(out, mat_a, mat_b, scales_a, scales_b, bias);
Ke Bao's avatar
Ke Bao committed
226
227
228
    }
  } else if (m <= 32) {
    if (n <= 4096) {
229
230
231
232
233
234
235
      cutlass_int8_scaled_mm<
          ElementOutput,
          ArchTag,
          cutlass::gemm::GemmShape<32, 64, 128>,
          cutlass::gemm::GemmShape<32, 64, 64>,
          InstructionShape,
          6>(out, mat_a, mat_b, scales_a, scales_b, bias);
Ke Bao's avatar
Ke Bao committed
236
    } else {
237
238
239
240
241
242
243
      cutlass_int8_scaled_mm<
          ElementOutput,
          ArchTag,
          cutlass::gemm::GemmShape<32, 64, 128>,
          cutlass::gemm::GemmShape<32, 64, 64>,
          InstructionShape,
          5>(out, mat_a, mat_b, scales_a, scales_b, bias);
Ke Bao's avatar
Ke Bao committed
244
    }
Ke Bao's avatar
Ke Bao committed
245
246
  } else if (m <= 64) {
    if (n <= 4096) {
247
248
249
250
251
252
253
      cutlass_int8_scaled_mm<
          ElementOutput,
          ArchTag,
          cutlass::gemm::GemmShape<64, 64, 128>,
          cutlass::gemm::GemmShape<32, 64, 64>,
          InstructionShape,
          5>(out, mat_a, mat_b, scales_a, scales_b, bias);
Ke Bao's avatar
Ke Bao committed
254
    } else {
255
256
257
258
259
260
261
      cutlass_int8_scaled_mm<
          ElementOutput,
          ArchTag,
          cutlass::gemm::GemmShape<64, 128, 128>,
          cutlass::gemm::GemmShape<64, 64, 64>,
          InstructionShape,
          5>(out, mat_a, mat_b, scales_a, scales_b, bias);
Ke Bao's avatar
Ke Bao committed
262
263
    }
  } else if (m <= 128 && n < 8192) {
264
265
266
267
268
269
270
    cutlass_int8_scaled_mm<
        ElementOutput,
        ArchTag,
        cutlass::gemm::GemmShape<64, 128, 128>,
        cutlass::gemm::GemmShape<64, 64, 64>,
        InstructionShape,
        5>(out, mat_a, mat_b, scales_a, scales_b, bias);
Ke Bao's avatar
Ke Bao committed
271
  } else {
272
273
274
275
276
277
278
    cutlass_int8_scaled_mm<
        ElementOutput,
        ArchTag,
        cutlass::gemm::GemmShape<128, 128, 64>,
        cutlass::gemm::GemmShape<64, 64, 64>,
        InstructionShape,
        5>(out, mat_a, mat_b, scales_a, scales_b, bias);
Ke Bao's avatar
Ke Bao committed
279
280
281
  }
}

282
283
284
285
286
287
288
289
290
291
292
293
294
template <
    typename ElementOutput,
    typename TileShape,
    typename ClusterShape,
    typename MainloopScheduleType,
    bool WithBias>
void cutlass_int8_scaled_mm_sm90(
    torch::Tensor& out,
    const torch::Tensor& mat_a,
    const torch::Tensor& mat_b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const c10::optional<torch::Tensor>& bias) {
Ke Bao's avatar
Ke Bao committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
  using ArchTag = cutlass::arch::Sm90;

  using ElementAccumulator = int32_t;
  using ElementCompute = float;
  using ElementInputA = int8_t;
  using ElementInputB = int8_t;

  static constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementInputA>::value;
  static constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementInputB>::value;
  static constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementOutput>::value;
  static constexpr int AlignmentOutput = 128 / cutlass::sizeof_bits<ElementOutput>::value;

  using OperatorClass = cutlass::arch::OpClassTensorOp;

  using EpilogueScheduleType = cutlass::epilogue::TmaWarpSpecialized;
  using TileSchedulerType = cutlass::gemm::PersistentScheduler;

312
313
  using XScale = cutlass::epilogue::fusion::
      Sm90ColBroadcast<0, TileShape, ElementCompute, ElementCompute, Stride<Int<1>, Int<0>, Int<0>>>;
Ke Bao's avatar
Ke Bao committed
314

315
316
  using WScale = cutlass::epilogue::fusion::
      Sm90RowBroadcast<0, TileShape, ElementCompute, ElementCompute, Stride<Int<0>, Int<1>, Int<0>>>;
Ke Bao's avatar
Ke Bao committed
317

318
319
  using Bias = cutlass::epilogue::fusion::
      Sm90RowBroadcast<0, TileShape, ElementOutput, ElementOutput, Stride<Int<0>, Int<1>, Int<0>>>;
Ke Bao's avatar
Ke Bao committed
320
321
322
323

  using Accum = cutlass::epilogue::fusion::Sm90AccFetch;

  // Scale
324
325
  using Compute0 = cutlass::epilogue::fusion::
      Sm90Compute<cutlass::multiplies, ElementCompute, ElementCompute, cutlass::FloatRoundStyle::round_to_nearest>;
Ke Bao's avatar
Ke Bao committed
326
327
328

  using EVTCompute0 = cutlass::epilogue::fusion::Sm90EVT<Compute0, WScale, Accum>;

329
330
  using Compute1 = cutlass::epilogue::fusion::
      Sm90Compute<cutlass::multiplies, ElementOutput, ElementCompute, cutlass::FloatRoundStyle::round_to_nearest>;
Ke Bao's avatar
Ke Bao committed
331
332
333
334

  using EVTCompute1 = cutlass::epilogue::fusion::Sm90EVT<Compute1, XScale, EVTCompute0>;

  // With bias
335
336
  using ComputeWithBias = cutlass::epilogue::fusion::
      Sm90Compute<cutlass::multiply_add, ElementOutput, ElementCompute, cutlass::FloatRoundStyle::round_to_nearest>;
Ke Bao's avatar
Ke Bao committed
337
338
339
340
341
  using EVTComputeWithBias = cutlass::epilogue::fusion::Sm90EVT<ComputeWithBias, XScale, EVTCompute0, Bias>;

  using EpilogueEVT = typename cutlass::platform::conditional<WithBias, EVTComputeWithBias, EVTCompute1>::type;

  using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
      ArchTag,
      OperatorClass,
      TileShape,
      ClusterShape,
      cutlass::epilogue::collective::EpilogueTileAuto,
      ElementAccumulator,
      ElementCompute,
      ElementOutput,
      cutlass::layout::RowMajor,
      AlignmentC,
      ElementOutput,
      cutlass::layout::RowMajor,
      AlignmentOutput,
      EpilogueScheduleType,
      EpilogueEVT>::CollectiveOp;
Ke Bao's avatar
Ke Bao committed
357
358
359
360
361

  using Stages = cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(
      sizeof(typename CollectiveEpilogue::SharedStorage))>;

  using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
362
363
364
365
366
367
368
369
370
371
372
373
      ArchTag,
      OperatorClass,
      ElementInputA,
      cutlass::layout::RowMajor,
      AlignmentA,
      ElementInputB,
      cutlass::layout::ColumnMajor,
      AlignmentB,
      ElementAccumulator,
      TileShape,
      ClusterShape,
      Stages,
Ke Bao's avatar
Ke Bao committed
374
375
      MainloopScheduleType>::CollectiveOp;

376
377
378
379
380
  using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
      Shape<int, int, int, int>,  // Indicates ProblemShape
      CollectiveMainloop,
      CollectiveEpilogue,
      TileSchedulerType>;
Ke Bao's avatar
Ke Bao committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

  using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;

  Gemm gemm_op;

  int m = mat_a.size(0);
  int k = mat_a.size(1);
  int n = mat_b.size(1);

  auto a_ptr = static_cast<ElementInputA*>(mat_a.data_ptr());
  auto b_ptr = static_cast<ElementInputB*>(mat_b.data_ptr());
  auto o_ptr = static_cast<ElementOutput*>(out.data_ptr());

  auto a_s_ptr = static_cast<ElementCompute*>(scales_a.data_ptr());
  auto b_s_ptr = static_cast<ElementCompute*>(scales_b.data_ptr());

  using StrideA = typename Gemm::GemmKernel::StrideA;
  using StrideB = typename Gemm::GemmKernel::StrideB;
  using StrideC = typename Gemm::GemmKernel::StrideC;
  using StrideD = typename Gemm::GemmKernel::StrideD;

  StrideA stride_a = cutlass::make_cute_packed_stride(StrideA{}, make_shape(m, k, 1));
  StrideB stride_b = cutlass::make_cute_packed_stride(StrideB{}, make_shape(n, k, 1));
  StrideC stride_c;
  StrideD stride_d = cutlass::make_cute_packed_stride(StrideD{}, make_shape(m, n, 1));

407
408
409
410
411
412
413
414
415
  typename Gemm::Arguments args = {
      cutlass::gemm::GemmUniversalMode::kGemm,
      {m, n, k, 1},
      {a_ptr, stride_a, b_ptr, stride_b},
      {{},  // epilogue.thread
       nullptr,
       stride_c,
       o_ptr,
       stride_d}};
Ke Bao's avatar
Ke Bao committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

  if constexpr (WithBias) {
    ElementOutput* bias_ptr = static_cast<ElementOutput*>(bias->data_ptr());
    args.epilogue.thread = {
        {a_s_ptr},
        {{b_s_ptr}, {}, {}},
        {bias_ptr},
        {},
    };
  } else {
    args.epilogue.thread = {
        {a_s_ptr},
        {{b_s_ptr}, {}, {}},
        {},
    };
  }

433
434
  auto workspace = torch::empty(
      gemm_op.get_workspace_size(args), torch::TensorOptions().dtype(torch::kUInt8).device(mat_a.device()));
Ke Bao's avatar
Ke Bao committed
435
436
437
438

  auto stream = at::cuda::getCurrentCUDAStream(mat_a.get_device());

  auto can_implement = gemm_op.can_implement(args);
439
440
441
442
  TORCH_CHECK(
      can_implement == cutlass::Status::kSuccess,
      "gemm cannot implement, error: ",
      cutlassGetStatusString(can_implement));
Ke Bao's avatar
Ke Bao committed
443
444
445
446
447
448

  auto status = gemm_op(args, workspace.data_ptr(), stream);
  TORCH_CHECK(status == cutlass::Status::kSuccess, "gemm executioin failed, error: ", cutlassGetStatusString(status));
}

template <typename ElementOutput, typename TileShape, typename ClusterShape, typename MainloopScheduleType>
449
450
451
452
453
454
455
void sm90_dispatch_bias(
    torch::Tensor& out,
    const torch::Tensor& mat_a,
    const torch::Tensor& mat_b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const c10::optional<torch::Tensor>& bias) {
Ke Bao's avatar
Ke Bao committed
456
457
458
459
460
461
462
463
464
465
  if (bias) {
    cutlass_int8_scaled_mm_sm90<ElementOutput, TileShape, ClusterShape, MainloopScheduleType, true>(
        out, mat_a, mat_b, scales_a, scales_b, bias);
  } else {
    cutlass_int8_scaled_mm_sm90<ElementOutput, TileShape, ClusterShape, MainloopScheduleType, false>(
        out, mat_a, mat_b, scales_a, scales_b, bias);
  }
}

template <typename ElementOutput>
466
467
468
469
470
471
472
void sm90_dispatch_shape(
    torch::Tensor& out,
    const torch::Tensor& mat_a,
    const torch::Tensor& mat_b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const c10::optional<torch::Tensor>& bias) {
Ke Bao's avatar
Ke Bao committed
473
474
475
476
  int m = mat_a.size(0);
  int n = mat_b.size(1);
  if (m <= 32) {
    if (n < 8192) {
477
478
479
480
481
      return sm90_dispatch_bias<
          ElementOutput,
          Shape<_64, _64, _128>,
          Shape<_1, _8, _1>,
          cutlass::gemm::KernelTmaWarpSpecialized>(out, mat_a, mat_b, scales_a, scales_b, bias);
Ke Bao's avatar
Ke Bao committed
482
    } else {
483
484
485
486
487
      return sm90_dispatch_bias<
          ElementOutput,
          Shape<_64, _128, _128>,
          Shape<_1, _8, _1>,
          cutlass::gemm::KernelTmaWarpSpecialized>(out, mat_a, mat_b, scales_a, scales_b, bias);
Ke Bao's avatar
Ke Bao committed
488
489
490
    }
  } else if (m <= 64) {
    if (n < 8192) {
491
492
493
494
495
      return sm90_dispatch_bias<
          ElementOutput,
          Shape<_64, _64, _128>,
          Shape<_1, _4, _1>,
          cutlass::gemm::KernelTmaWarpSpecialized>(out, mat_a, mat_b, scales_a, scales_b, bias);
Ke Bao's avatar
Ke Bao committed
496
    } else {
497
498
499
500
501
      return sm90_dispatch_bias<
          ElementOutput,
          Shape<_64, _64, _256>,
          Shape<_1, _1, _1>,
          cutlass::gemm::KernelTmaWarpSpecialized>(out, mat_a, mat_b, scales_a, scales_b, bias);
Ke Bao's avatar
Ke Bao committed
502
503
504
    }
  } else if (m <= 128) {
    if (n <= 4096) {
505
506
507
508
509
      return sm90_dispatch_bias<
          ElementOutput,
          Shape<_64, _64, _128>,
          Shape<_2, _1, _1>,
          cutlass::gemm::KernelTmaWarpSpecialized>(out, mat_a, mat_b, scales_a, scales_b, bias);
Ke Bao's avatar
Ke Bao committed
510
    } else {
511
512
513
514
515
      return sm90_dispatch_bias<
          ElementOutput,
          Shape<_64, _128, _128>,
          Shape<_2, _1, _1>,
          cutlass::gemm::KernelTmaWarpSpecialized>(out, mat_a, mat_b, scales_a, scales_b, bias);
Ke Bao's avatar
Ke Bao committed
516
517
    }
  } else {
518
519
520
521
522
    return sm90_dispatch_bias<
        ElementOutput,
        Shape<_128, _128, _128>,
        Shape<_2, _1, _1>,
        cutlass::gemm::KernelTmaWarpSpecializedPingpong>(out, mat_a, mat_b, scales_a, scales_b, bias);
Ke Bao's avatar
Ke Bao committed
523
524
525
  }
}

526
527
528
529
530
531
532
torch::Tensor int8_scaled_mm(
    const torch::Tensor& mat_a,
    const torch::Tensor& mat_b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Dtype& out_dtype,
    const c10::optional<torch::Tensor>& bias) {
Ke Bao's avatar
Ke Bao committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
  TORCH_CHECK(mat_a.is_cuda(), "mat_a must be a CUDA tensor");
  TORCH_CHECK(mat_b.is_cuda(), "mat_b must be a CUDA tensor");
  TORCH_CHECK(mat_a.dim() == 2, "mat_a must be a 2D tensor");
  TORCH_CHECK(mat_b.dim() == 2, "mat_b must be a 2D tensor");
  TORCH_CHECK(mat_a.stride(1) == 1, "mat_a must be a row major tensor");
  TORCH_CHECK(mat_b.stride(0) == 1, "mat_a must be a column major tensor");
  TORCH_CHECK(mat_a.size(1) == mat_b.size(0), "mat_a and mat_b shapes cannot be multiplied");
  TORCH_CHECK(mat_a.size(1) % 16 == 0, "mat_a.size(1) must be multiple of 16 for memory alignment");
  TORCH_CHECK(mat_b.size(0) % 16 == 0, "mat_b.size(0) must be multiple of 16 for memory alignment");
  TORCH_CHECK(mat_b.size(1) % 8 == 0, "mat_b.size(1) must be multiple of 8 for memory alignment");  // out.stride(0)
  TORCH_CHECK(mat_a.scalar_type() == torch::kInt8, "mat_a must be Int8");
  TORCH_CHECK(mat_b.scalar_type() == torch::kInt8, "mat_b must be Int8");
  TORCH_CHECK(out_dtype == torch::kHalf || out_dtype == torch::kBFloat16, "out_dtype must be Half or BFloat16");

  TORCH_CHECK(scales_a.numel() == mat_a.size(0), "size of scales_a is not matched");
  TORCH_CHECK(scales_b.numel() == mat_b.size(1), "size of scales_b is not matched");
  TORCH_CHECK(scales_a.is_contiguous(), "scales_a must be contiguous");
  TORCH_CHECK(scales_b.is_contiguous(), "scales_b msut be contiguous");
  TORCH_CHECK(scales_a.scalar_type() == torch::kFloat32, "scales_a must be Float32");
  TORCH_CHECK(scales_b.scalar_type() == torch::kFloat32, "scales_b must be Float32");

  if (bias) {
    TORCH_CHECK(bias->numel() == mat_b.size(1), "size of bias is not matched");
    TORCH_CHECK(bias->is_contiguous(), "bias must be contiguous");
    TORCH_CHECK(bias->dtype() == out_dtype, "bias dtype must match output dtype");
  }

  torch::Tensor out = torch::empty({mat_a.size(0), mat_b.size(1)}, mat_a.options().dtype(out_dtype));

  auto sm_version = getSMVersion();

  if (sm_version >= 75 && sm_version < 80) {
    TORCH_CHECK(out_dtype == torch::kHalf, "out_dtype must be Half for SM75");
    sm75_dispatch_shape<cutlass::half_t, cutlass::arch::Sm75, cutlass::gemm::GemmShape<8, 8, 16>>(
        out, mat_a, mat_b, scales_a, scales_b, bias);
Ke Bao's avatar
Ke Bao committed
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
  } else if (sm_version >= 80 && sm_version < 90) {
    if (out_dtype == torch::kBFloat16) {
      sm80_dispatch_shape<cutlass::bfloat16_t, cutlass::arch::Sm80, cutlass::gemm::GemmShape<16, 8, 32>>(
          out, mat_a, mat_b, scales_a, scales_b, bias);
    } else {
      sm80_dispatch_shape<cutlass::half_t, cutlass::arch::Sm80, cutlass::gemm::GemmShape<16, 8, 32>>(
          out, mat_a, mat_b, scales_a, scales_b, bias);
    }
  } else if (sm_version == 90) {
#if defined CUDA_VERSION && CUDA_VERSION >= 12000
    // cutlass 3.x
    if (out_dtype == torch::kBFloat16) {
      sm90_dispatch_shape<cutlass::bfloat16_t>(out, mat_a, mat_b, scales_a, scales_b, bias);
    } else {
      sm90_dispatch_shape<cutlass::half_t>(out, mat_a, mat_b, scales_a, scales_b, bias);
    }
#else
    // fallback to cutlass 2.x
Ke Bao's avatar
Ke Bao committed
586
587
588
589
590
591
592
    if (out_dtype == torch::kBFloat16) {
      sm80_dispatch_shape<cutlass::bfloat16_t, cutlass::arch::Sm80, cutlass::gemm::GemmShape<16, 8, 32>>(
          out, mat_a, mat_b, scales_a, scales_b, bias);
    } else {
      sm80_dispatch_shape<cutlass::half_t, cutlass::arch::Sm80, cutlass::gemm::GemmShape<16, 8, 32>>(
          out, mat_a, mat_b, scales_a, scales_b, bias);
    }
Ke Bao's avatar
Ke Bao committed
593
#endif
Ke Bao's avatar
Ke Bao committed
594
595
596
597
598
599
  } else {
    TORCH_CHECK_NOT_IMPLEMENTED(false, "No implemented int8_scaled_mm for current compute capability.");
  }

  return out;
}