"vscode:/vscode.git/clone" did not exist on "da3890e82a97e9b1f970133c0fef6341a8bbf791"
qwen2_vl.py 23.9 KB
Newer Older
Yineng Zhang's avatar
Yineng Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/19e6e80e10118f855137b90740936c0b11ac397f/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py
# Copyright 2024 The Qwen team.
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Qwen2-VL model compatible with HuggingFace weights."""
25
import logging
Yineng Zhang's avatar
Yineng Zhang committed
26
from functools import lru_cache, partial
27
from typing import Iterable, List, Optional, Tuple, Type, TypedDict
Yineng Zhang's avatar
Yineng Zhang committed
28
29
30
31
32

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
33
from einops import rearrange
Mick's avatar
Mick committed
34
35
from transformers import Qwen2VLConfig
from transformers.models.qwen2_vl.configuration_qwen2_vl import Qwen2VLVisionConfig
Yineng Zhang's avatar
Yineng Zhang committed
36
37

from sglang.srt.hf_transformers_utils import get_processor
Yineng Zhang's avatar
Yineng Zhang committed
38
from sglang.srt.layers.activation import QuickGELU
Mick's avatar
Mick committed
39
from sglang.srt.layers.attention.vision import VisionAttention
Yineng Zhang's avatar
Yineng Zhang committed
40
41
from sglang.srt.layers.linear import ColumnParallelLinear, RowParallelLinear
from sglang.srt.layers.logits_processor import LogitsProcessor
42
from sglang.srt.layers.pooler import Pooler, PoolingType
Yineng Zhang's avatar
Yineng Zhang committed
43
from sglang.srt.layers.quantization.base_config import QuantizationConfig
44
from sglang.srt.layers.vocab_parallel_embedding import ParallelLMHead
Yineng Zhang's avatar
Yineng Zhang committed
45
46
from sglang.srt.managers.schedule_batch import ImageInputs
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
47
from sglang.srt.model_loader.weight_utils import default_weight_loader
Yineng Zhang's avatar
Yineng Zhang committed
48
from sglang.srt.models.qwen2 import Qwen2Model
49
from sglang.srt.utils import add_prefix
Yineng Zhang's avatar
Yineng Zhang committed
50

51
logger = logging.getLogger(__name__)
Yineng Zhang's avatar
Yineng Zhang committed
52

Mick's avatar
Mick committed
53

Yineng Zhang's avatar
Yineng Zhang committed
54
55
56
57
58
# === Vision Inputs === #


class Qwen2VLImageInputs(TypedDict):
    pixel_values: torch.Tensor
59
    """Shape:
Yineng Zhang's avatar
Yineng Zhang committed
60
61
62
63
64
    `(num_patches, num_channels * patch_size * patch_size)`
    """

    image_grid_thw: torch.Tensor
    """Shape: `(num_images, 3)`
65

Yineng Zhang's avatar
Yineng Zhang committed
66
67
68
69
70
71
    This should be in `(grid_t, grid_h, grid_w)` format.
    """


class Qwen2VLVideoInputs(TypedDict):
    pixel_values_videos: torch.Tensor
72
73
    """Shape:
    `(num_patches,
Yineng Zhang's avatar
Yineng Zhang committed
74
75
76
77
78
      num_channels * temporal_patch_size * patch_size * patch_size)`
    """

    video_grid_thw: torch.Tensor
    """Shape: `(num_videos, 3)`
79

Yineng Zhang's avatar
Yineng Zhang committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    This should be in `(grid_t, grid_h, grid_w)` format.
    """


# === Vision Encoder === #


class Qwen2VisionMLP(nn.Module):

    def __init__(
        self,
        in_features: int,
        hidden_features: int = None,
        act_layer: Type[nn.Module] = QuickGELU,
        quant_config: Optional[QuantizationConfig] = None,
95
        prefix: str = "",
Yineng Zhang's avatar
Yineng Zhang committed
96
97
98
    ):
        super().__init__()
        self.fc1 = ColumnParallelLinear(
99
100
101
102
            in_features,
            hidden_features,
            quant_config=quant_config,
            prefix=add_prefix("fc1", prefix),
Yineng Zhang's avatar
Yineng Zhang committed
103
104
105
        )
        self.act = act_layer()
        self.fc2 = RowParallelLinear(
106
107
108
109
            hidden_features,
            in_features,
            quant_config=quant_config,
            prefix=add_prefix("fc2", prefix),
Yineng Zhang's avatar
Yineng Zhang committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x_parallel, _ = self.fc1(x)
        x_parallel = self.act(x_parallel)
        x, _ = self.fc2(x_parallel)
        return x


class Qwen2VisionBlock(nn.Module):

    def __init__(
        self,
        dim: int,
        num_heads: int,
        mlp_ratio: float,
        act_layer: Type[nn.Module] = QuickGELU,
        norm_layer: Type[nn.Module] = None,
128
        attn_implementation: Optional[str] = "sdpa",
Yineng Zhang's avatar
Yineng Zhang committed
129
        quant_config: Optional[QuantizationConfig] = None,
130
        prefix: str = "",
Yineng Zhang's avatar
Yineng Zhang committed
131
132
133
134
135
136
137
    ) -> None:
        super().__init__()
        if norm_layer is None:
            norm_layer = partial(nn.LayerNorm, eps=1e-6)
        self.norm1 = norm_layer(dim)
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
138
139
140
141
142
143
144
145
146
        if attn_implementation == "sdpa":
            use_context_forward = False
            use_full_precision_softmax = False
        elif attn_implementation == "flash_attention_2":
            use_full_precision_softmax = False
            use_context_forward = True
        elif attn_implementation == "eager":
            use_full_precision_softmax = True
            use_context_forward = False
Yineng Zhang's avatar
Yineng Zhang committed
147

Mick's avatar
Mick committed
148
        self.attn = VisionAttention(
Yineng Zhang's avatar
Yineng Zhang committed
149
150
151
            embed_dim=dim,
            num_heads=num_heads,
            projection_size=dim,
Mick's avatar
Mick committed
152
            use_qkv_parallel=False,
153
154
155
            use_context_forward=use_context_forward,
            use_full_precision_softmax=use_full_precision_softmax,
            flatten_batch=True,
Yineng Zhang's avatar
Yineng Zhang committed
156
            quant_config=quant_config,
157
            prefix=add_prefix("attn", prefix),
Yineng Zhang's avatar
Yineng Zhang committed
158
159
        )
        self.mlp = Qwen2VisionMLP(
160
161
162
163
164
            dim,
            mlp_hidden_dim,
            act_layer=act_layer,
            quant_config=quant_config,
            prefix=add_prefix("mlp", prefix),
Yineng Zhang's avatar
Yineng Zhang committed
165
166
167
168
169
        )

    def forward(
        self, x: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor
    ) -> torch.Tensor:
Mick's avatar
Mick committed
170
171
172
173
        hidden_states = self.norm1(x)
        hidden_states = rearrange(hidden_states, "s b ... -> b s ...")
        attn = self.attn(
            hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
Yineng Zhang's avatar
Yineng Zhang committed
174
        )
Mick's avatar
Mick committed
175
176
        attn = rearrange(attn, "b s ... -> s b ...")
        x = x + attn
Yineng Zhang's avatar
Yineng Zhang committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
        x = x + self.mlp(self.norm2(x))
        return x


class Qwen2VisionPatchEmbed(nn.Module):

    def __init__(
        self,
        patch_size: int = 14,
        temporal_patch_size: int = 2,
        in_chans: int = 3,
        embed_dim: int = 1152,
    ) -> None:
        super().__init__()
        self.patch_size = patch_size
        self.temporal_patch_size = temporal_patch_size
        self.embed_dim = embed_dim

        kernel_size = [temporal_patch_size, patch_size, patch_size]
        self.proj = nn.Conv3d(
            in_chans, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        L, C = x.shape
        x = x.view(L, -1, self.temporal_patch_size, self.patch_size, self.patch_size)
        x = self.proj(x).view(L, self.embed_dim)
        return x


class Qwen2VisionPatchMerger(nn.Module):

    def __init__(
        self,
        d_model: int,
        context_dim: int,
        norm_layer: Type[nn.Module] = None,
        spatial_merge_size: int = 2,
        quant_config: Optional[QuantizationConfig] = None,
216
        prefix: str = "",
Yineng Zhang's avatar
Yineng Zhang committed
217
218
219
220
221
222
223
224
225
226
227
228
229
    ) -> None:
        super().__init__()
        self.hidden_size = context_dim * (spatial_merge_size**2)
        if norm_layer is None:
            norm_layer = partial(nn.LayerNorm, eps=1e-6)
        self.ln_q = norm_layer(context_dim)
        self.mlp = nn.ModuleList(
            [
                ColumnParallelLinear(
                    self.hidden_size,
                    self.hidden_size,
                    bias=True,
                    quant_config=quant_config,
230
                    prefix=add_prefix("mlp.0", prefix),
Yineng Zhang's avatar
Yineng Zhang committed
231
232
233
                ),
                nn.GELU(),
                RowParallelLinear(
234
235
236
237
238
                    self.hidden_size,
                    d_model,
                    bias=True,
                    quant_config=quant_config,
                    prefix=add_prefix("mlp.2", prefix),
Yineng Zhang's avatar
Yineng Zhang committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
                ),
            ]
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.ln_q(x)
        x = x.view(-1, self.hidden_size)

        mlp_fc1, mlp_act, mlp_fc2 = self.mlp
        x_parallel, _ = mlp_fc1(x)
        x_parallel = mlp_act(x_parallel)
        out, _ = mlp_fc2(x_parallel)
        return out


class Qwen2VisionRotaryEmbedding(nn.Module):

    def __init__(self, dim: int, theta: float = 10000.0) -> None:
        super().__init__()
        self.dim = dim
        self.theta = theta
        inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self._seq_len_cached = 0
        self._freqs_cached = None

    def update_freqs_cache(self, seqlen: int) -> None:
        if seqlen > self._seq_len_cached:
            seqlen *= 2
            self._seq_len_cached = seqlen
            self.inv_freq = 1.0 / (
                self.theta
                ** (
                    torch.arange(
                        0, self.dim, 2, dtype=torch.float, device=self.inv_freq.device
                    )
                    / self.dim
                )
            )
            seq = torch.arange(
                seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype
            )
            freqs = torch.outer(seq, self.inv_freq)
            self._freqs_cached = freqs

    def forward(self, seqlen: int) -> torch.Tensor:
        self.update_freqs_cache(seqlen)
        return self._freqs_cached[:seqlen]


class Qwen2VisionTransformer(nn.Module):

    def __init__(
        self,
        vision_config: Qwen2VLVisionConfig,
        norm_eps: float = 1e-6,
        quant_config: Optional[QuantizationConfig] = None,
296
        prefix: str = "",
Yineng Zhang's avatar
Yineng Zhang committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
    ) -> None:
        super().__init__()

        patch_size: int = vision_config.patch_size
        temporal_patch_size: int = vision_config.temporal_patch_size
        spatial_merge_size: int = vision_config.spatial_merge_size
        in_chans: int = vision_config.in_chans
        hidden_size: int = vision_config.hidden_size
        embed_dim: int = vision_config.embed_dim
        depth: int = vision_config.depth
        num_heads: int = vision_config.num_heads
        mlp_ratio: float = vision_config.mlp_ratio

        self.spatial_merge_size = spatial_merge_size

        self.patch_embed = Qwen2VisionPatchEmbed(
            patch_size=patch_size,
            temporal_patch_size=temporal_patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
        )

        norm_layer = partial(nn.LayerNorm, eps=norm_eps)
        head_dim = embed_dim // num_heads
        self.rotary_pos_emb = Qwen2VisionRotaryEmbedding(head_dim // 2)
        self.blocks = nn.ModuleList(
            [
                Qwen2VisionBlock(
                    dim=embed_dim,
                    num_heads=num_heads,
                    mlp_ratio=mlp_ratio,
                    norm_layer=norm_layer,
329
                    attn_implementation="sdpa",
Yineng Zhang's avatar
Yineng Zhang committed
330
                    quant_config=quant_config,
331
                    prefix=add_prefix(f"blocks.{i}", prefix),
Yineng Zhang's avatar
Yineng Zhang committed
332
                )
333
                for i in range(depth)
Yineng Zhang's avatar
Yineng Zhang committed
334
335
336
337
338
339
340
            ]
        )
        self.merger = Qwen2VisionPatchMerger(
            d_model=hidden_size,
            context_dim=embed_dim,
            norm_layer=norm_layer,
            quant_config=quant_config,
341
            prefix=add_prefix("merger", prefix),
Yineng Zhang's avatar
Yineng Zhang committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
        )

    @property
    def dtype(self) -> torch.dtype:
        return self.blocks[0].mlp.fc2.weight.dtype

    @property
    def device(self) -> torch.device:
        return self.blocks[0].mlp.fc2.weight.device

    def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
        pos_ids = []
        for t, h, w in grid_thw:
            hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
            wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
            hpos_ids = (
                hpos_ids.reshape(
                    h // self.spatial_merge_size,
                    self.spatial_merge_size,
                    w // self.spatial_merge_size,
                    self.spatial_merge_size,
                )
                .permute(0, 2, 1, 3)
                .flatten()
            )
            wpos_ids = (
                wpos_ids.reshape(
                    h // self.spatial_merge_size,
                    self.spatial_merge_size,
                    w // self.spatial_merge_size,
                    self.spatial_merge_size,
                )
                .permute(0, 2, 1, 3)
                .flatten()
            )
            pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
        pos_ids = torch.cat(pos_ids, dim=0)
        max_grid_size = grid_thw[:, 1:].max()
        rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
        rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
        return rotary_pos_emb

    def forward(
        self,
        x: torch.Tensor,
        grid_thw: torch.Tensor,
    ) -> torch.Tensor:
        # patchify
        x = x.to(device=self.device, dtype=self.dtype)
        x = self.patch_embed(x)

        # compute position embedding
        rotary_pos_emb = self.rot_pos_emb(grid_thw)

        # compute cu_seqlens
        cu_seqlens = torch.repeat_interleave(
            grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
        ).cumsum(dim=0, dtype=torch.int32)
        cu_seqlens = F.pad(cu_seqlens, (1, 0), "constant", 0)

        # transformers
        x = x.unsqueeze(1)
        for blk in self.blocks:
            x = blk(x, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)

        # adapter
        x = self.merger(x)
        return x


cached_get_processor = lru_cache(get_processor)


415
class Qwen2VLForConditionalGeneration(nn.Module):
Yineng Zhang's avatar
Yineng Zhang committed
416
417
418
419
420
421
422
423
424
425
426
427
428
    def calculate_num_image_tokens(self, image_grid_thw: Tuple[int, int, int]):
        processor = cached_get_processor(self.config._name_or_path)
        grid_t, grid_h, grid_w = image_grid_thw
        num_image_tokens = (
            grid_t
            * grid_h
            * grid_w
            // processor.image_processor.merge_size
            // processor.image_processor.merge_size
        )
        return num_image_tokens

    # Use grid_t * grid_w * grid_h to pad tokens for each image
429
    # add replaced padding by unique image hash
Yineng Zhang's avatar
Yineng Zhang committed
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
    def pad_input_ids(self, input_ids: List[int], image_inputs: ImageInputs):
        image_grid_thws = image_inputs.image_grid_thws
        pad_values = image_inputs.pad_values

        image_indices = [
            idx
            for idx, token in enumerate(input_ids)
            if token == self.config.image_token_id
        ]
        image_inputs.image_offsets = []

        input_ids_with_image = []
        for image_cnt, _ in enumerate(image_grid_thws):
            num_image_tokens = self.calculate_num_image_tokens(
                image_grid_thws[image_cnt]
            )
            if image_cnt == 0:
                non_image_tokens = input_ids[: image_indices[image_cnt]]
            else:
                non_image_tokens = input_ids[
                    image_indices[image_cnt - 1] + 1 : image_indices[image_cnt]
                ]
            input_ids_with_image.extend(non_image_tokens)
            image_inputs.image_offsets.append(len(input_ids_with_image))
            pad_ids = pad_values * (
                (num_image_tokens + len(pad_values)) // len(pad_values)
            )
            input_ids_with_image.extend(pad_ids[:num_image_tokens])
        input_ids_with_image.extend(input_ids[image_indices[-1] + 1 :])

        return input_ids_with_image

    def __init__(
        self,
        config: Qwen2VLConfig,
        quant_config: Optional[QuantizationConfig] = None,
466
        prefix: str = "",
Yineng Zhang's avatar
Yineng Zhang committed
467
468
469
470
471
472
473
474
475
476
    ) -> None:
        super().__init__()

        self.config = config
        self.visual = Qwen2VisionTransformer(
            config.vision_config,
            norm_eps=getattr(config, "rms_norm_eps", 1e-6),
            # NOTE: Qwen2-VL vision encoder does not support any
            # quantization method now.
            quant_config=None,
477
            prefix=add_prefix("visual", prefix),
Yineng Zhang's avatar
Yineng Zhang committed
478
479
        )

480
481
482
        self.model = Qwen2Model(
            config, quant_config, prefix=add_prefix("model", prefix)
        )
Yineng Zhang's avatar
Yineng Zhang committed
483
484
485
486
487

        if config.tie_word_embeddings:
            self.lm_head = self.model.embed_tokens
        else:
            self.lm_head = ParallelLMHead(
488
489
490
491
                config.vocab_size,
                config.hidden_size,
                quant_config=quant_config,
                prefix=add_prefix("lm_head", prefix),
Yineng Zhang's avatar
Yineng Zhang committed
492
493
494
            )

        self.logits_processor = LogitsProcessor(config)
495
        self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
Yineng Zhang's avatar
Yineng Zhang committed
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513

    def _process_image_input(self, image_input: Qwen2VLImageInputs) -> torch.Tensor:
        pixel_values = image_input["pixel_values"].type(self.visual.dtype)
        image_embeds = self.visual(pixel_values, grid_thw=image_input["image_grid_thw"])
        return image_embeds

    def _process_video_input(self, video_input: Qwen2VLVideoInputs) -> torch.Tensor:
        pixel_values_videos = video_input["pixel_values_videos"].type(self.visual.dtype)
        video_embeds = self.visual(
            pixel_values_videos, grid_thw=video_input["video_grid_thw"]
        )
        return video_embeds

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        forward_batch: ForwardBatch,
514
        get_embedding: bool = False,
Yineng Zhang's avatar
Yineng Zhang committed
515
516
517
518
519
520
521
522
523
524
525
526
527
    ):
        """Run forward pass for Qwen2-VL.

        Args:
            input_ids: Flattened (concatenated) input_ids corresponding to a
                batch.
            positions: Flattened (concatenated) position ids corresponding to a
                batch.
                **NOTE**: If mrope is enabled (default setting for Qwen2-VL
                opensource models), the shape will be `(3, seq_len)`,
                otherwise it will be `(seq_len,).
                (Use input_metadata.mrope_positions to replace it)
        """
528
529
530
        if getattr(self.config, "rope_scaling", {}).get("type", None) == "mrope":
            positions = forward_batch.mrope_positions

Yineng Zhang's avatar
Yineng Zhang committed
531
532
533
534
535
        image_inputs = None
        if forward_batch.image_inputs is not None:
            image_inputs = [
                img for img in forward_batch.image_inputs if img is not None
            ]
536

537
538
539
540
541
        if (
            forward_batch.forward_mode.is_decode()
            or image_inputs is None
            or len(image_inputs) == 0
        ):
Yineng Zhang's avatar
Yineng Zhang committed
542
543
544
545
546
547
548
549
            inputs_embeds = self.model.embed_tokens(input_ids)
        else:
            if getattr(self.config, "rope_scaling", {}).get("type", None) == "mrope":
                assert positions.ndim == 2 and positions.size(0) == 3, (
                    "multimodal section rotary embedding requires "
                    f"(3, seq_len) positions, but got {positions.size()}"
                )

550
551
552
553
554
            # Clamp input ids. This is because the input_ids for the image tokens are
            # filled with the hash values of the image for the prefix matching in the radix attention.
            # There values are useless because their embeddings will be replaced by vision embeddings anyway.
            input_ids.clamp_(min=0, max=self.config.vocab_size - 1)

Yineng Zhang's avatar
Yineng Zhang committed
555
556
            inputs_embeds = self.model.embed_tokens(input_ids)
            extend_start_loc_cpu = forward_batch.extend_start_loc.cpu().numpy()
557
            prefix_lens_cpu = forward_batch.extend_prefix_lens_cpu
Yineng Zhang's avatar
Yineng Zhang committed
558
            for i, image in enumerate(forward_batch.image_inputs):
559
                if image is None:
Yineng Zhang's avatar
Yineng Zhang committed
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
                    continue
                start_idx = extend_start_loc_cpu[i]
                prefix_len = prefix_lens_cpu[i]

                pixel_values = torch.tensor(image.pixel_values, device="cuda")
                image_grid_thws = torch.tensor(
                    np.array(image.image_grid_thws), device="cuda"
                )
                image_offsets = image.image_offsets
                image_input = Qwen2VLImageInputs(
                    pixel_values=pixel_values, image_grid_thw=image_grid_thws
                )
                image_embeds = self._process_image_input(image_input)

                image_embeds_offset = 0
                for idx, image_offset in enumerate(image_offsets):
                    if image_offset < prefix_len:
                        continue
                    num_image_tokens = self.calculate_num_image_tokens(
                        image_grid_thws[idx]
                    )
581

Yineng Zhang's avatar
Yineng Zhang committed
582
583
584
585
                    left_idx = start_idx + (image_offset - prefix_len)
                    right_idx = (
                        start_idx + (image_offset - prefix_len) + num_image_tokens
                    )
586

Yineng Zhang's avatar
Yineng Zhang committed
587
588
589
590
591
592
593
594
595
596
597
                    inputs_embeds[left_idx:right_idx] = image_embeds[
                        image_embeds_offset : image_embeds_offset + num_image_tokens
                    ]
                    image_embeds_offset += num_image_tokens

        hidden_states = self.model(
            input_ids=input_ids,
            positions=positions,
            forward_batch=forward_batch,
            input_embeds=inputs_embeds,
        )
598
599
600

        if not get_embedding:
            return self.logits_processor(
601
                input_ids, hidden_states, self.lm_head, forward_batch
602
603
604
            )
        else:
            return self.pooler(hidden_states, forward_batch)
Yineng Zhang's avatar
Yineng Zhang committed
605
606
607
608
609
610
611
612
613
614
615
616
617
618

    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "up_proj", 1),
            ("gate_up_proj", "gate_proj", 0),
        ]
        params_dict = dict(self.named_parameters(remove_duplicate=False))
        for name, loaded_weight in weights:
            if "rotary_emb.inv_freq" in name:
                continue
619
620
            if self.config.tie_word_embeddings and "lm_head.weight" in name:
                continue
Mick's avatar
Mick committed
621

Yineng Zhang's avatar
Yineng Zhang committed
622
623
624
625
            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
Mick's avatar
Mick committed
626

Yineng Zhang's avatar
Yineng Zhang committed
627
628
629
630
631
632
633
634
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
Mick's avatar
Mick committed
635

Yineng Zhang's avatar
Yineng Zhang committed
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
                if "visual" in name and "qkv.weight" in name:
                    visual_num_heads = self.config.vision_config.num_heads
                    visual_embed_dim = self.config.vision_config.embed_dim
                    head_size = visual_embed_dim // visual_num_heads
                    loaded_weight = loaded_weight.view(
                        3, visual_num_heads, head_size, visual_embed_dim
                    )
                    loaded_weight = loaded_weight.transpose(0, 1)
                    loaded_weight = loaded_weight.reshape(-1, visual_embed_dim)
                elif "visual" in name and "qkv.bias" in name:
                    visual_num_heads = self.config.vision_config.num_heads
                    visual_embed_dim = self.config.vision_config.embed_dim
                    head_size = visual_embed_dim // visual_num_heads
                    loaded_weight = loaded_weight.view(3, visual_num_heads, head_size)
                    loaded_weight = loaded_weight.transpose(0, 1)
                    loaded_weight = loaded_weight.reshape(-1)
Mick's avatar
Mick committed
652
653
654
655
656

                if "visual" in name:
                    # adapt to VisionAttention
                    name = name.replace(r"attn.qkv.", r"attn.qkv_proj.")

Yineng Zhang's avatar
Yineng Zhang committed
657
658
659
660
661
662
663
664
665
666
667
668
669
670
                try:
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue
                    param = params_dict[name]
                except KeyError:
                    print(params_dict.keys())
                    raise

                weight_loader = getattr(param, "weight_loader", default_weight_loader)
                weight_loader(param, loaded_weight)


EntryClass = Qwen2VLForConditionalGeneration