tiktoken.rs 9.82 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
use super::traits::{Decoder, Encoder, Encoding, SpecialTokens, Tokenizer as TokenizerTrait};
use anyhow::{Error, Result};
use tiktoken_rs::{cl100k_base, p50k_base, p50k_edit, r50k_base, CoreBPE};

/// Tiktoken tokenizer wrapper for OpenAI GPT models
pub struct TiktokenTokenizer {
    tokenizer: CoreBPE,
    #[allow(dead_code)]
    model: TiktokenModel,
    special_tokens: SpecialTokens,
    vocab_size: usize,
}

/// Supported Tiktoken models
#[derive(Debug, Clone, Copy)]
pub enum TiktokenModel {
    /// GPT-4, GPT-3.5-turbo, text-embedding-ada-002
    Cl100kBase,
    /// Codex models, text-davinci-002, text-davinci-003
    P50kBase,
    /// Use for edit models like text-davinci-edit-001, code-davinci-edit-001
    P50kEdit,
    /// GPT-3 models like davinci
    R50kBase,
}

impl TiktokenTokenizer {
    /// Create a new Tiktoken tokenizer for the specified model
    pub fn new(model: TiktokenModel) -> Result<Self> {
        let tokenizer =
            match model {
                TiktokenModel::Cl100kBase => cl100k_base()
                    .map_err(|e| Error::msg(format!("Failed to load cl100k_base: {}", e)))?,
                TiktokenModel::P50kBase => p50k_base()
                    .map_err(|e| Error::msg(format!("Failed to load p50k_base: {}", e)))?,
                TiktokenModel::P50kEdit => p50k_edit()
                    .map_err(|e| Error::msg(format!("Failed to load p50k_edit: {}", e)))?,
                TiktokenModel::R50kBase => r50k_base()
                    .map_err(|e| Error::msg(format!("Failed to load r50k_base: {}", e)))?,
            };

        // Extract special tokens (tiktoken-rs doesn't expose them directly)
        // We'll use common ones for GPT models
        let special_tokens = Self::get_special_tokens_for_model(model);

        // Get vocabulary size (this is an approximation)
        let vocab_size = match model {
            TiktokenModel::Cl100kBase => 100256, // cl100k has ~100k tokens
            TiktokenModel::P50kBase | TiktokenModel::P50kEdit => 50281, // p50k has ~50k tokens
            TiktokenModel::R50kBase => 50257,    // r50k has ~50k tokens
        };

        Ok(TiktokenTokenizer {
            tokenizer,
            model,
            special_tokens,
            vocab_size,
        })
    }

    /// Create a tokenizer from a model string (e.g., "gpt-4", "gpt-3.5-turbo")
    pub fn from_model_name(model_name: &str) -> Result<Self> {
        let model = Self::model_from_name(model_name)?;
        Self::new(model)
    }

    /// Determine the appropriate model from a model name
    fn model_from_name(model_name: &str) -> Result<TiktokenModel> {
        // Based on OpenAI's model-to-encoding mapping
        if model_name.contains("gpt-4")
            || model_name.contains("gpt-3.5")
            || model_name.contains("turbo")
        {
            Ok(TiktokenModel::Cl100kBase)
        } else if model_name.contains("davinci-002")
            || model_name.contains("davinci-003")
            || model_name.contains("codex")
        {
            Ok(TiktokenModel::P50kBase)
        } else if model_name.contains("edit") {
            Ok(TiktokenModel::P50kEdit)
        } else if model_name.contains("davinci")
            || model_name.contains("curie")
            || model_name.contains("babbage")
            || model_name.contains("ada")
        {
            Ok(TiktokenModel::R50kBase)
        } else {
            // Return an error for unrecognized model names to prevent silent failures
            Err(anyhow::anyhow!(
                "Unrecognized OpenAI model name: '{}'. Expected GPT-3, GPT-3.5, GPT-4, or related model names",
                model_name
            ))
        }
    }

    /// Get special tokens for a specific model
    fn get_special_tokens_for_model(model: TiktokenModel) -> SpecialTokens {
        // These are common special tokens for GPT models
        // The actual token IDs might vary by model
        match model {
            TiktokenModel::Cl100kBase => SpecialTokens {
                bos_token: Some("<|endoftext|>".to_string()),
                eos_token: Some("<|endoftext|>".to_string()),
                unk_token: None,
                sep_token: None,
                pad_token: Some("<|endoftext|>".to_string()),
                cls_token: None,
                mask_token: None,
                additional_special_tokens: vec![
                    "<|fim_prefix|>".to_string(),
                    "<|fim_middle|>".to_string(),
                    "<|fim_suffix|>".to_string(),
                    "<|endofprompt|>".to_string(),
                ],
            },
            _ => SpecialTokens {
                bos_token: Some("<|endoftext|>".to_string()),
                eos_token: Some("<|endoftext|>".to_string()),
                unk_token: None,
                sep_token: None,
                pad_token: Some("<|endoftext|>".to_string()),
                cls_token: None,
                mask_token: None,
                additional_special_tokens: vec![],
            },
        }
    }
}

impl Encoder for TiktokenTokenizer {
    fn encode(&self, input: &str) -> Result<Encoding> {
        let tokens = self.tokenizer.encode_ordinary(input);
        Ok(Encoding::Tiktoken(tokens))
    }

    fn encode_batch(&self, inputs: &[&str]) -> Result<Vec<Encoding>> {
        inputs.iter().map(|input| self.encode(input)).collect()
    }
}

impl Decoder for TiktokenTokenizer {
    fn decode(&self, token_ids: &[u32], _skip_special_tokens: bool) -> Result<String> {
        // Convert u32 to usize for tiktoken-rs
        let tokens: Vec<usize> = token_ids.iter().map(|&id| id as usize).collect();

        self.tokenizer
            .decode(tokens)
            .map_err(|e| Error::msg(format!("Decoding failed: {}", e)))
    }
}

impl TokenizerTrait for TiktokenTokenizer {
    fn vocab_size(&self) -> usize {
        self.vocab_size
    }

    fn get_special_tokens(&self) -> &SpecialTokens {
        &self.special_tokens
    }

    fn token_to_id(&self, _token: &str) -> Option<u32> {
        // Tiktoken doesn't provide direct token-to-id mapping
        // We'd need to encode the token and check if it produces a single ID
        None
    }

    fn id_to_token(&self, _id: u32) -> Option<String> {
        // Tiktoken doesn't provide direct id-to-token mapping
        // We can only decode IDs to text
        None
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_tiktoken_creation() {
        let tokenizer = TiktokenTokenizer::new(TiktokenModel::Cl100kBase).unwrap();
        assert_eq!(tokenizer.vocab_size(), 100256);
    }

    #[test]
    fn test_model_from_name() {
        assert!(matches!(
            TiktokenTokenizer::model_from_name("gpt-4").unwrap(),
            TiktokenModel::Cl100kBase
        ));
        assert!(matches!(
            TiktokenTokenizer::model_from_name("gpt-3.5-turbo").unwrap(),
            TiktokenModel::Cl100kBase
        ));
        assert!(matches!(
            TiktokenTokenizer::model_from_name("text-davinci-003").unwrap(),
            TiktokenModel::P50kBase
        ));
        assert!(matches!(
            TiktokenTokenizer::model_from_name("text-davinci-edit-001").unwrap(),
            TiktokenModel::P50kEdit
        ));
        assert!(matches!(
            TiktokenTokenizer::model_from_name("davinci").unwrap(),
            TiktokenModel::R50kBase
        ));
    }

    #[test]
    fn test_encode_decode() {
        let tokenizer = TiktokenTokenizer::new(TiktokenModel::Cl100kBase).unwrap();

        let text = "Hello, world!";
        let encoding = tokenizer.encode(text).unwrap();

        let decoded = tokenizer.decode(&encoding.token_ids(), false).unwrap();
        assert_eq!(decoded, text);
    }

    #[test]
    fn test_batch_encode() {
        let tokenizer = TiktokenTokenizer::new(TiktokenModel::Cl100kBase).unwrap();

        let texts = vec!["Hello", "World", "Test"];
        let encodings = tokenizer.encode_batch(&texts).unwrap();

        assert_eq!(encodings.len(), 3);
        for (i, encoding) in encodings.iter().enumerate() {
            let decoded = tokenizer.decode(&encoding.token_ids(), false).unwrap();
            assert_eq!(decoded, texts[i]);
        }
    }

    #[test]
    fn test_special_tokens() {
        let tokenizer = TiktokenTokenizer::new(TiktokenModel::Cl100kBase).unwrap();
        let special_tokens = tokenizer.get_special_tokens();

        assert!(special_tokens.eos_token.is_some());
        assert_eq!(special_tokens.eos_token.as_ref().unwrap(), "<|endoftext|>");
    }

    #[test]
    fn test_unrecognized_model_name_returns_error() {
        // Test that unrecognized model names return an error
        let result = TiktokenTokenizer::from_model_name("distilgpt-2");
        assert!(result.is_err());
        if let Err(e) = result {
            assert!(e.to_string().contains("Unrecognized OpenAI model name"));
        }

        let result = TiktokenTokenizer::from_model_name("bert-base-uncased");
        assert!(result.is_err());
        if let Err(e) = result {
            assert!(e.to_string().contains("Unrecognized OpenAI model name"));
        }

        let result = TiktokenTokenizer::from_model_name("llama-7b");
        assert!(result.is_err());
        if let Err(e) = result {
            assert!(e.to_string().contains("Unrecognized OpenAI model name"));
        }
    }

    #[test]
    fn test_recognized_model_names() {
        // Test that recognized model names work correctly
        assert!(TiktokenTokenizer::from_model_name("gpt-4").is_ok());
        assert!(TiktokenTokenizer::from_model_name("gpt-3.5-turbo").is_ok());
        assert!(TiktokenTokenizer::from_model_name("text-davinci-003").is_ok());
        assert!(TiktokenTokenizer::from_model_name("code-davinci-002").is_ok());
        assert!(TiktokenTokenizer::from_model_name("text-curie-001").is_ok());
        assert!(TiktokenTokenizer::from_model_name("text-babbage-001").is_ok());
        assert!(TiktokenTokenizer::from_model_name("text-ada-001").is_ok());
    }
}