contribution_guide.md 6.05 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Contribution Guide

Welcome to **SGLang**! We appreciate your interest in contributing. This guide provides a concise overview of how to set up your environment, run tests, build documentation, and open a Pull Request (PR). Whether you’re fixing a small bug or developing a major feature, we encourage following these steps for a smooth contribution process.

## 1. Setting Up & Building from Source

### 1.1 Fork and Clone the Repository

**Note**: SGLang does **not** accept PRs on the main repo. Please fork the repository under your GitHub account, then clone your fork locally.

```bash
git clone https://github.com/<your_user_name>/sglang.git
cd sglang
```

### 1.2 Install Dependencies & Build

Refer to [Install SGLang](https://sgl-project.github.io/start/install.html) documentation for more details on setting up the necessary dependencies.

Install correct version of flashinfer according to your PyTorch and CUDA versions.
```bash
python -c "import torch; print('PyTorch Version:', torch.__version__); print('CUDA Version:', torch.version.cuda)"
```

Below is an example on PyTorch 2.4 with CUDA 12.4:
```bash
pip install --upgrade pip
pip install -e "python[all]" --find-links https://flashinfer.ai/whl/cu124/torch2.4/flashinfer/

# Install the lateset SGLang on your own fork repo
cd sglang/python
pip install .
```

## 2. Code Formatting with Pre-Commit

We use [pre-commit](https://pre-commit.com/) to maintain consistent code style checks. Before pushing your changes, please run:

```bash
pip3 install pre-commit
cd sglang
pre-commit run --all-files
```

- **`pre-commit run --all-files`** manually runs all configured checks, applying fixes if possible. If it fails the first time, re-run it to ensure lint errors are fully resolved. Make sure your code passes all checks **before** creating a Pull Request.
- **Do not commit** directly to the `main` branch. Always create a new branch (e.g., `feature/my-new-feature`), push your changes, and open a PR from that branch.

## 3. Writing Documentation & Running Docs CI

Most documentation files are located under the `docs/` folder. We prefer **Jupyter Notebooks** over Markdown so that all examples can be executed and validated by our docs CI pipeline.

### 3.1 Docs Workflow

Add or update your Jupyter notebooks in the appropriate subdirectories under `docs/`. If you add new files, remember to update `index.rst` (or relevant `.rst` files) accordingly.

```bash
# 1) Compile all Jupyter notebooks
make compile

# 2) Generate static HTML
make html

# 3) Preview documentation locally
bash serve.sh
# Open your browser at the displayed port to view the docs

# 4) Clean notebook outputs
pip install nbstripout
find . -name '*.ipynb' -exec nbstripout {} \;
# nbstripout removes notebook outputs so your PR stays clean

# 5) Pre-commit checks and create a PR
pre-commit run --all-files
# After these checks pass, push your changes and open a PR on your branch
```


If you need to run and shut up a SGLang server or engine, following these examples:

1. Launch and close Sever:

```python
#Launch Sever

from sglang.utils import (
    execute_shell_command,
    wait_for_server,
    terminate_process,
    print_highlight,
)

server_process = execute_shell_command(
    "python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --port 30000 --host 0.0.0.0"
)

wait_for_server("http://localhost:30000")

# Terminate Sever

terminate_process(server_process)
```
2. Launch Engine and close Engine

```python
# Launch Engine

import sglang as sgl
import asyncio

llm = sgl.Engine(model_path="meta-llama/Meta-Llama-3.1-8B-Instruct")

# Terminalte Engine
llm.shutdown()
```


## 4. Running Unit Tests & Adding to CI

SGLang uses Python’s built-in [unittest](https://docs.python.org/3/library/unittest.html) framework. You can run tests either individually or in suites.

### 4.1 Test Backend Runtime

```bash
cd sglang/test/srt

# Run a single file
python3 test_srt_endpoint.py

# Run a single test
python3 -m unittest test_srt_endpoint.TestSRTEndpoint.test_simple_decode

# Run a suite with multiple files
python3 run_suite.py --suite minimal
```

### 4.2 Test Frontend Language

```bash
cd sglang/test/lang
export OPENAI_API_KEY=sk-*****

# Run a single file
python3 test_openai_backend.py

# Run a single test
python3 -m unittest test_openai_backend.TestOpenAIBackend.test_few_shot_qa

# Run a suite with multiple files
python3 run_suite.py --suite minimal
```

### 4.3 Adding or Updating Tests in CI

- Create new test files under `test/srt` or `test/lang` depending on the type of test.
- Ensure they are referenced in the respective `run_suite.py` (e.g., `test/srt/run_suite.py` or `test/lang/run_suite.py`) so they’re picked up in CI.
- In CI, all tests run automatically. You may modify the workflows in [`.github/workflows/`](https://github.com/sgl-project/sglang/tree/main/.github/workflows) to add custom test groups or extra checks.

### 4.4 Writing Elegant Test Cases

- Examine existing tests in [sglang/test](https://github.com/sgl-project/sglang/tree/main/test) for practical examples.
- Keep each test function focused on a single scenario or piece of functionality.
- Give tests descriptive names reflecting their purpose.
- Use robust assertions (e.g., assert, unittest methods) to validate outcomes.
- Clean up resources to avoid side effects and preserve test independence.


## 5. Tips for Newcomers

If you want to contribute but don’t have a specific idea in mind, pick issues labeled [“good first issue” or “help wanted”](https://github.com/sgl-project/sglang/issues?q=is%3Aissue+label%3A%22good+first+issue%22%2C%22help+wanted%22). These tasks typically have lower complexity and provide an excellent introduction to the codebase. Also check out this [code walk-through](https://github.com/zhaochenyang20/Awesome-ML-SYS-Tutorial/tree/main/sglang/code-walk-through) for a deeper look into SGLang’s workflow.

If you have any questions or want to start a discussion, please feel free to ask in our [Slack channel](https://join.slack.com/t/sgl-fru7574/shared_invite/zt-2um0ad92q-LkU19KQTxCGzlCgRiOiQEw).

Thank you for your interest in SGLang—**happy coding**!