openai_api_completions.ipynb 21.9 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
7
    "# OpenAI APIs - Completions\n",
Chayenne's avatar
Chayenne committed
8
    "\n",
9
10
    "SGLang provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models.\n",
    "A complete reference for the API is available in the [OpenAI API Reference](https://platform.openai.com/docs/api-reference).\n",
11
    "\n",
12
    "This tutorial covers the following popular APIs:\n",
Chayenne's avatar
Chayenne committed
13
14
15
16
    "\n",
    "- `chat/completions`\n",
    "- `completions`\n",
    "- `batches`\n",
17
18
    "\n",
    "Check out other tutorials to learn about vision APIs for vision-language models and embedding APIs for embedding models."
Chayenne's avatar
Chayenne committed
19
20
21
22
23
24
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
25
    "## Launch A Server\n",
Chayenne's avatar
Chayenne committed
26
    "\n",
27
    "Launch the server in your terminal and wait for it to initialize."
Chayenne's avatar
Chayenne committed
28
29
30
31
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
32
   "execution_count": null,
33
   "metadata": {},
Chayenne's avatar
Chayenne committed
34
   "outputs": [],
Chayenne's avatar
Chayenne committed
35
   "source": [
36
37
38
39
40
41
    "from sglang.utils import (\n",
    "    execute_shell_command,\n",
    "    wait_for_server,\n",
    "    terminate_process,\n",
    "    print_highlight,\n",
    ")\n",
Chayenne's avatar
Chayenne committed
42
43
    "\n",
    "server_process = execute_shell_command(\n",
Chayenne's avatar
Chayenne committed
44
    "    \"python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --port 30000 --host 0.0.0.0\"\n",
Chayenne's avatar
Chayenne committed
45
46
    ")\n",
    "\n",
47
    "wait_for_server(\"http://localhost:30000\")"
Chayenne's avatar
Chayenne committed
48
49
   ]
  },
50
51
52
53
54
55
56
57
58
59
60
61
62
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Chat Completions\n",
    "\n",
    "### Usage\n",
    "\n",
    "The server fully implements the OpenAI API.\n",
    "It will automatically apply the chat template specified in the Hugging Face tokenizer, if one is available.\n",
    "You can also specify a custom chat template with `--chat-template` when launching the server."
   ]
  },
Chayenne's avatar
Chayenne committed
63
64
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
65
   "execution_count": null,
66
   "metadata": {},
Chayenne's avatar
Chayenne committed
67
   "outputs": [],
Chayenne's avatar
Chayenne committed
68
69
70
71
72
73
74
75
76
77
78
79
80
   "source": [
    "import openai\n",
    "\n",
    "client = openai.Client(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
81
82
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
83
84
85
86
87
88
89
90
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
91
    "The chat completions API accepts OpenAI Chat Completions API's parameters. Refer to [OpenAI Chat Completions API](https://platform.openai.com/docs/api-reference/chat/create) for more details.\n",
Chayenne's avatar
Chayenne committed
92
93
94
95
96
97
    "\n",
    "Here is an example of a detailed chat completion request:"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
98
   "execution_count": null,
99
   "metadata": {},
Chayenne's avatar
Chayenne committed
100
   "outputs": [],
Chayenne's avatar
Chayenne committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
   "source": [
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"system\",\n",
    "            \"content\": \"You are a knowledgeable historian who provides concise responses.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"Tell me about ancient Rome\"},\n",
    "        {\n",
    "            \"role\": \"assistant\",\n",
    "            \"content\": \"Ancient Rome was a civilization centered in Italy.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"What were their major achievements?\"},\n",
    "    ],\n",
    "    temperature=0.3,  # Lower temperature for more focused responses\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
117
    "    max_tokens=128,  # Reasonable length for a concise response\n",
Chayenne's avatar
Chayenne committed
118
119
120
121
122
123
124
    "    top_p=0.95,  # Slightly higher for better fluency\n",
    "    presence_penalty=0.2,  # Mild penalty to avoid repetition\n",
    "    frequency_penalty=0.2,  # Mild penalty for more natural language\n",
    "    n=1,  # Single response is usually more stable\n",
    "    seed=42,  # Keep for reproducibility\n",
    ")\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
125
126
127
128
129
130
131
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
132
    "Streaming mode is also supported."
Lianmin Zheng's avatar
Lianmin Zheng committed
133
134
135
136
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
137
   "execution_count": null,
138
   "metadata": {},
Chayenne's avatar
Chayenne committed
139
   "outputs": [],
Lianmin Zheng's avatar
Lianmin Zheng committed
140
141
142
143
144
145
146
147
148
   "source": [
    "stream = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[{\"role\": \"user\", \"content\": \"Say this is a test\"}],\n",
    "    stream=True,\n",
    ")\n",
    "for chunk in stream:\n",
    "    if chunk.choices[0].delta.content is not None:\n",
    "        print(chunk.choices[0].delta.content, end=\"\")"
Chayenne's avatar
Chayenne committed
149
150
151
152
153
154
155
156
157
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Completions\n",
    "\n",
    "### Usage\n",
158
    "Completions API is similar to Chat Completions API, but without the `messages` parameter or chat templates."
Chayenne's avatar
Chayenne committed
159
160
161
162
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
163
   "execution_count": null,
164
   "metadata": {},
Chayenne's avatar
Chayenne committed
165
   "outputs": [],
Chayenne's avatar
Chayenne committed
166
167
168
169
170
171
172
173
174
   "source": [
    "response = client.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    prompt=\"List 3 countries and their capitals.\",\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    "    n=1,\n",
    "    stop=None,\n",
    ")\n",
175
176
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
177
178
179
180
181
182
183
184
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
185
    "The completions API accepts OpenAI Completions API's parameters.  Refer to [OpenAI Completions API](https://platform.openai.com/docs/api-reference/completions/create) for more details.\n",
Chayenne's avatar
Chayenne committed
186
187
188
189
190
191
    "\n",
    "Here is an example of a detailed completions request:"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
192
   "execution_count": null,
193
   "metadata": {},
Chayenne's avatar
Chayenne committed
194
   "outputs": [],
Chayenne's avatar
Chayenne committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
   "source": [
    "response = client.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    prompt=\"Write a short story about a space explorer.\",\n",
    "    temperature=0.7,  # Moderate temperature for creative writing\n",
    "    max_tokens=150,  # Longer response for a story\n",
    "    top_p=0.9,  # Balanced diversity in word choice\n",
    "    stop=[\"\\n\\n\", \"THE END\"],  # Multiple stop sequences\n",
    "    presence_penalty=0.3,  # Encourage novel elements\n",
    "    frequency_penalty=0.3,  # Reduce repetitive phrases\n",
    "    n=1,  # Generate one completion\n",
    "    seed=123,  # For reproducible results\n",
    ")\n",
    "\n",
209
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
210
211
   ]
  },
Lianmin Zheng's avatar
Lianmin Zheng committed
212
213
214
215
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
216
    "## Structured Outputs (JSON, Regex, EBNF)\n",
217
    "You can specify a JSON schema, [regular expression](https://en.wikipedia.org/wiki/Regular_expression) or [EBNF](https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form) to constrain the model output. The model output will be guaranteed to follow the given constraints. Only one constraint parameter (`json_schema`, `regex`, or `ebnf`) can be specified for a request.\n",
218
    "\n",
219
    "SGLang supports two grammar backends:\n",
220
    "\n",
221
    "- [Outlines](https://github.com/dottxt-ai/outlines) (default): Supports JSON schema and regular expression constraints.\n",
222
223
224
    "- [XGrammar](https://github.com/mlc-ai/xgrammar): Supports JSON schema and EBNF constraints.\n",
    "  - XGrammar currently uses the [GGML BNF format](https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md)\n",
    "\n",
225
    "Initialize the XGrammar backend using `--grammar-backend xgrammar` flag\n",
226
227
    "```bash\n",
    "python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
228
    "--port 30000 --host 0.0.0.0 --grammar-backend [xgrammar|outlines] # xgrammar or outlines (default: outlines)\n",
229
    "```\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
230
231
232
233
234
235
236
    "\n",
    "### JSON"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
237
   "metadata": {},
Lianmin Zheng's avatar
Lianmin Zheng committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
   "outputs": [],
   "source": [
    "import json\n",
    "\n",
    "json_schema = json.dumps(\n",
    "    {\n",
    "        \"type\": \"object\",\n",
    "        \"properties\": {\n",
    "            \"name\": {\"type\": \"string\", \"pattern\": \"^[\\\\w]+$\"},\n",
    "            \"population\": {\"type\": \"integer\"},\n",
    "        },\n",
    "        \"required\": [\"name\", \"population\"],\n",
    "    }\n",
    ")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
Chayenne's avatar
Chayenne committed
256
257
258
259
    "        {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": \"Give me the information of the capital of France in the JSON format.\",\n",
    "        },\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=128,\n",
    "    response_format={\n",
    "        \"type\": \"json_schema\",\n",
    "        \"json_schema\": {\"name\": \"foo\", \"schema\": json.loads(json_schema)},\n",
    "    },\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
276
    "### Regular expression (use default \"outlines\" backend)"
Lianmin Zheng's avatar
Lianmin Zheng committed
277
278
279
280
281
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
282
   "metadata": {},
Lianmin Zheng's avatar
Lianmin Zheng committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
   "outputs": [],
   "source": [
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"What is the capital of France?\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=128,\n",
    "    extra_body={\"regex\": \"(Paris|London)\"},\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### EBNF (use \"xgrammar\" backend)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# terminate the existing server(that's using default outlines backend) for this demo\n",
    "terminate_process(server_process)\n",
    "\n",
    "# start new server with xgrammar backend\n",
    "server_process = execute_shell_command(\n",
    "    \"python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --port 30000 --host 0.0.0.0 --grammar-backend xgrammar\"\n",
    ")\n",
    "wait_for_server(\"http://localhost:30000\")\n",
    "\n",
    "# EBNF example\n",
    "ebnf_grammar = r\"\"\"\n",
    "        root ::= \"Hello\" | \"Hi\" | \"Hey\"\n",
    "        \"\"\"\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"system\", \"content\": \"You are a helpful EBNF test bot.\"},\n",
    "        {\"role\": \"user\", \"content\": \"Say a greeting.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=32,\n",
    "    extra_body={\"ebnf\": ebnf_grammar},\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
Chayenne's avatar
Chayenne committed
338
339
340
341
342
343
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Batches\n",
    "\n",
344
    "Batches API for chat completions and completions are also supported. You can upload your requests in `jsonl` files, create a batch job, and retrieve the results when the batch job is completed (which takes longer but costs less).\n",
Chayenne's avatar
Chayenne committed
345
346
347
348
349
350
351
352
353
354
355
356
    "\n",
    "The batches APIs are:\n",
    "\n",
    "- `batches`\n",
    "- `batches/{batch_id}/cancel`\n",
    "- `batches/{batch_id}`\n",
    "\n",
    "Here is an example of a batch job for chat completions, completions are similar.\n"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
357
   "execution_count": null,
358
   "metadata": {},
Chayenne's avatar
Chayenne committed
359
   "outputs": [],
Chayenne's avatar
Chayenne committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
    "\n",
    "client = OpenAI(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "requests = [\n",
    "    {\n",
    "        \"custom_id\": \"request-1\",\n",
    "        \"method\": \"POST\",\n",
    "        \"url\": \"/chat/completions\",\n",
    "        \"body\": {\n",
    "            \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "            \"messages\": [\n",
    "                {\"role\": \"user\", \"content\": \"Tell me a joke about programming\"}\n",
    "            ],\n",
    "            \"max_tokens\": 50,\n",
    "        },\n",
    "    },\n",
    "    {\n",
    "        \"custom_id\": \"request-2\",\n",
    "        \"method\": \"POST\",\n",
    "        \"url\": \"/chat/completions\",\n",
    "        \"body\": {\n",
    "            \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "            \"messages\": [{\"role\": \"user\", \"content\": \"What is Python?\"}],\n",
    "            \"max_tokens\": 50,\n",
    "        },\n",
    "    },\n",
    "]\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    file_response = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_response = client.batches.create(\n",
    "    input_file_id=file_response.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
407
    "print_highlight(f\"Batch job created with ID: {batch_response.id}\")"
Chayenne's avatar
Chayenne committed
408
409
410
411
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
412
   "execution_count": null,
413
   "metadata": {},
Chayenne's avatar
Chayenne committed
414
   "outputs": [],
Chayenne's avatar
Chayenne committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
   "source": [
    "while batch_response.status not in [\"completed\", \"failed\", \"cancelled\"]:\n",
    "    time.sleep(3)\n",
    "    print(f\"Batch job status: {batch_response.status}...trying again in 3 seconds...\")\n",
    "    batch_response = client.batches.retrieve(batch_response.id)\n",
    "\n",
    "if batch_response.status == \"completed\":\n",
    "    print(\"Batch job completed successfully!\")\n",
    "    print(f\"Request counts: {batch_response.request_counts}\")\n",
    "\n",
    "    result_file_id = batch_response.output_file_id\n",
    "    file_response = client.files.content(result_file_id)\n",
    "    result_content = file_response.read().decode(\"utf-8\")\n",
    "\n",
    "    results = [\n",
    "        json.loads(line) for line in result_content.split(\"\\n\") if line.strip() != \"\"\n",
    "    ]\n",
    "\n",
    "    for result in results:\n",
434
435
    "        print_highlight(f\"Request {result['custom_id']}:\")\n",
    "        print_highlight(f\"Response: {result['response']}\")\n",
Chayenne's avatar
Chayenne committed
436
    "\n",
437
    "    print_highlight(\"Cleaning up files...\")\n",
Chayenne's avatar
Chayenne committed
438
439
440
    "    # Only delete the result file ID since file_response is just content\n",
    "    client.files.delete(result_file_id)\n",
    "else:\n",
441
    "    print_highlight(f\"Batch job failed with status: {batch_response.status}\")\n",
Chayenne's avatar
Chayenne committed
442
    "    if hasattr(batch_response, \"errors\"):\n",
443
    "        print_highlight(f\"Errors: {batch_response.errors}\")"
Chayenne's avatar
Chayenne committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It takes a while to complete the batch job. You can use these two APIs to retrieve the batch job status or cancel the batch job.\n",
    "\n",
    "1. `batches/{batch_id}`: Retrieve the batch job status.\n",
    "2. `batches/{batch_id}/cancel`: Cancel the batch job.\n",
    "\n",
    "Here is an example to check the batch job status."
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
460
   "execution_count": null,
461
   "metadata": {},
Chayenne's avatar
Chayenne committed
462
   "outputs": [],
Chayenne's avatar
Chayenne committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
    "\n",
    "client = OpenAI(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "requests = []\n",
    "for i in range(100):\n",
    "    requests.append(\n",
    "        {\n",
    "            \"custom_id\": f\"request-{i}\",\n",
    "            \"method\": \"POST\",\n",
    "            \"url\": \"/chat/completions\",\n",
    "            \"body\": {\n",
    "                \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "                \"messages\": [\n",
    "                    {\n",
    "                        \"role\": \"system\",\n",
    "                        \"content\": f\"{i}: You are a helpful AI assistant\",\n",
    "                    },\n",
    "                    {\n",
    "                        \"role\": \"user\",\n",
    "                        \"content\": \"Write a detailed story about topic. Make it very long.\",\n",
    "                    },\n",
    "                ],\n",
    "                \"max_tokens\": 500,\n",
    "            },\n",
    "        }\n",
    "    )\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    uploaded_file = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_job = client.batches.create(\n",
    "    input_file_id=uploaded_file.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
508
509
    "print_highlight(f\"Created batch job with ID: {batch_job.id}\")\n",
    "print_highlight(f\"Initial status: {batch_job.status}\")\n",
Chayenne's avatar
Chayenne committed
510
511
512
513
514
515
    "\n",
    "time.sleep(10)\n",
    "\n",
    "max_checks = 5\n",
    "for i in range(max_checks):\n",
    "    batch_details = client.batches.retrieve(batch_id=batch_job.id)\n",
516
517
518
519
520
521
522
    "\n",
    "    print_highlight(\n",
    "        f\"Batch job details (check {i+1} / {max_checks}) // ID: {batch_details.id} // Status: {batch_details.status} // Created at: {batch_details.created_at} // Input file ID: {batch_details.input_file_id} // Output file ID: {batch_details.output_file_id}\"\n",
    "    )\n",
    "    print_highlight(\n",
    "        f\"<strong>Request counts: Total: {batch_details.request_counts.total} // Completed: {batch_details.request_counts.completed} // Failed: {batch_details.request_counts.failed}</strong>\"\n",
    "    )\n",
Chayenne's avatar
Chayenne committed
523
524
525
526
527
528
529
530
531
532
533
534
535
    "\n",
    "    time.sleep(3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here is an example to cancel a batch job."
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
536
   "execution_count": null,
537
   "metadata": {},
Chayenne's avatar
Chayenne committed
538
   "outputs": [],
Chayenne's avatar
Chayenne committed
539
540
541
542
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
Chayenne's avatar
Chayenne committed
543
    "import os\n",
Chayenne's avatar
Chayenne committed
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
    "\n",
    "client = OpenAI(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "requests = []\n",
    "for i in range(500):\n",
    "    requests.append(\n",
    "        {\n",
    "            \"custom_id\": f\"request-{i}\",\n",
    "            \"method\": \"POST\",\n",
    "            \"url\": \"/chat/completions\",\n",
    "            \"body\": {\n",
    "                \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "                \"messages\": [\n",
    "                    {\n",
    "                        \"role\": \"system\",\n",
    "                        \"content\": f\"{i}: You are a helpful AI assistant\",\n",
    "                    },\n",
    "                    {\n",
    "                        \"role\": \"user\",\n",
    "                        \"content\": \"Write a detailed story about topic. Make it very long.\",\n",
    "                    },\n",
    "                ],\n",
    "                \"max_tokens\": 500,\n",
    "            },\n",
    "        }\n",
    "    )\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    uploaded_file = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_job = client.batches.create(\n",
    "    input_file_id=uploaded_file.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
585
586
    "print_highlight(f\"Created batch job with ID: {batch_job.id}\")\n",
    "print_highlight(f\"Initial status: {batch_job.status}\")\n",
Chayenne's avatar
Chayenne committed
587
588
589
590
591
    "\n",
    "time.sleep(10)\n",
    "\n",
    "try:\n",
    "    cancelled_job = client.batches.cancel(batch_id=batch_job.id)\n",
592
    "    print_highlight(f\"Cancellation initiated. Status: {cancelled_job.status}\")\n",
Chayenne's avatar
Chayenne committed
593
594
595
596
597
598
    "    assert cancelled_job.status == \"cancelling\"\n",
    "\n",
    "    # Monitor the cancellation process\n",
    "    while cancelled_job.status not in [\"failed\", \"cancelled\"]:\n",
    "        time.sleep(3)\n",
    "        cancelled_job = client.batches.retrieve(batch_job.id)\n",
599
    "        print_highlight(f\"Current status: {cancelled_job.status}\")\n",
Chayenne's avatar
Chayenne committed
600
601
602
    "\n",
    "    # Verify final status\n",
    "    assert cancelled_job.status == \"cancelled\"\n",
603
    "    print_highlight(\"Batch job successfully cancelled\")\n",
Chayenne's avatar
Chayenne committed
604
605
    "\n",
    "except Exception as e:\n",
606
    "    print_highlight(f\"Error during cancellation: {e}\")\n",
Chayenne's avatar
Chayenne committed
607
608
609
610
611
612
    "    raise e\n",
    "\n",
    "finally:\n",
    "    try:\n",
    "        del_response = client.files.delete(uploaded_file.id)\n",
    "        if del_response.deleted:\n",
613
    "            print_highlight(\"Successfully cleaned up input file\")\n",
Chayenne's avatar
Chayenne committed
614
615
616
    "        if os.path.exists(input_file_path):\n",
    "            os.remove(input_file_path)\n",
    "            print_highlight(\"Successfully deleted local batch_requests.jsonl file\")\n",
Chayenne's avatar
Chayenne committed
617
    "    except Exception as e:\n",
618
    "        print_highlight(f\"Error cleaning up: {e}\")\n",
Chayenne's avatar
Chayenne committed
619
620
621
622
623
    "        raise e"
   ]
  },
  {
   "cell_type": "code",
624
625
   "execution_count": null,
   "metadata": {},
Lianmin Zheng's avatar
Lianmin Zheng committed
626
   "outputs": [],
Chayenne's avatar
Chayenne committed
627
628
629
630
631
632
   "source": [
    "terminate_process(server_process)"
   ]
  }
 ],
 "metadata": {
Chayenne's avatar
Chayenne committed
633
634
635
636
637
638
639
640
641
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
642
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
643
644
645
646
647
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}