openai_api_vision.ipynb 17.6 KB
Newer Older
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
7
    "# OpenAI APIs - Vision\n",
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
    "\n",
    "SGLang provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models.\n",
    "A complete reference for the API is available in the [OpenAI API Reference](https://platform.openai.com/docs/guides/vision).\n",
    "This tutorial covers the vision APIs for vision language models.\n",
    "\n",
    "SGLang supports vision language models such as Llama 3.2, LLaVA-OneVision, and QWen-VL2  \n",
    "- [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct)  \n",
    "- [lmms-lab/llava-onevision-qwen2-72b-ov-chat](https://huggingface.co/lmms-lab/llava-onevision-qwen2-72b-ov-chat)  \n",
    "- [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct)  "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Launch A Server\n",
    "\n",
    "This code block is equivalent to executing \n",
    "\n",
    "```bash\n",
    "python3 -m sglang.launch_server --model-path meta-llama/Llama-3.2-11B-Vision-Instruct \\\n",
    "  --port 30010 --chat-template llama_3_vision\n",
    "```\n",
    "in your terminal and wait for the server to be ready.\n",
    "\n",
    "Remember to add `--chat-template llama_3_vision` to specify the vision chat template, otherwise the server only supports text.\n",
    "We need to specify `--chat-template` for vision language models because the chat template provided in Hugging Face tokenizer only supports text."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "2024-11-02 00:24:10.542705: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:479] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
      "2024-11-02 00:24:10.554725: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:10575] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
      "2024-11-02 00:24:10.554758: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1442] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
      "2024-11-02 00:24:11.063662: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
      "[2024-11-02 00:24:19] server_args=ServerArgs(model_path='meta-llama/Llama-3.2-11B-Vision-Instruct', tokenizer_path='meta-llama/Llama-3.2-11B-Vision-Instruct', tokenizer_mode='auto', skip_tokenizer_init=False, load_format='auto', trust_remote_code=False, dtype='auto', kv_cache_dtype='auto', quantization=None, context_length=None, device='cuda', served_model_name='meta-llama/Llama-3.2-11B-Vision-Instruct', chat_template='llama_3_vision', is_embedding=False, host='127.0.0.1', port=30010, mem_fraction_static=0.88, max_running_requests=None, max_total_tokens=None, chunked_prefill_size=8192, max_prefill_tokens=16384, schedule_policy='lpm', schedule_conservativeness=1.0, tp_size=1, stream_interval=1, random_seed=553831757, constrained_json_whitespace_pattern=None, decode_log_interval=40, log_level='info', log_level_http=None, log_requests=False, show_time_cost=False, api_key=None, file_storage_pth='SGLang_storage', enable_cache_report=False, watchdog_timeout=600, dp_size=1, load_balance_method='round_robin', dist_init_addr=None, nnodes=1, node_rank=0, json_model_override_args='{}', enable_double_sparsity=False, ds_channel_config_path=None, ds_heavy_channel_num=32, ds_heavy_token_num=256, ds_heavy_channel_type='qk', ds_sparse_decode_threshold=4096, lora_paths=None, max_loras_per_batch=8, attention_backend='flashinfer', sampling_backend='flashinfer', grammar_backend='outlines', disable_flashinfer=False, disable_flashinfer_sampling=False, disable_radix_cache=False, disable_regex_jump_forward=False, disable_cuda_graph=False, disable_cuda_graph_padding=False, disable_disk_cache=False, disable_custom_all_reduce=False, disable_mla=False, disable_penalizer=False, disable_nan_detection=False, enable_overlap_schedule=False, enable_mixed_chunk=False, enable_torch_compile=False, torch_compile_max_bs=32, cuda_graph_max_bs=160, torchao_config='', enable_p2p_check=False, triton_attention_reduce_in_fp32=False, num_continuous_decode_steps=1)\n",
      "[2024-11-02 00:24:20] Use chat template for the OpenAI-compatible API server: llama_3_vision\n",
      "[2024-11-02 00:24:29 TP0] Automatically turn off --chunked-prefill-size and adjust --mem-fraction-static for multimodal models.\n",
      "[2024-11-02 00:24:29 TP0] Init torch distributed begin.\n",
      "[2024-11-02 00:24:32 TP0] Load weight begin. avail mem=76.83 GB\n",
      "[2024-11-02 00:24:32 TP0] lm_eval is not installed, GPTQ may not be usable\n",
      "INFO 11-02 00:24:32 weight_utils.py:243] Using model weights format ['*.safetensors']\n",
      "Loading safetensors checkpoint shards:   0% Completed | 0/5 [00:00<?, ?it/s]\n",
      "Loading safetensors checkpoint shards:  20% Completed | 1/5 [00:00<00:02,  1.61it/s]\n",
      "Loading safetensors checkpoint shards:  40% Completed | 2/5 [00:02<00:04,  1.35s/it]\n",
      "Loading safetensors checkpoint shards:  60% Completed | 3/5 [00:04<00:03,  1.58s/it]\n",
      "Loading safetensors checkpoint shards:  80% Completed | 4/5 [00:06<00:01,  1.70s/it]\n",
      "Loading safetensors checkpoint shards: 100% Completed | 5/5 [00:08<00:00,  1.76s/it]\n",
      "Loading safetensors checkpoint shards: 100% Completed | 5/5 [00:08<00:00,  1.62s/it]\n",
      "\n",
      "[2024-11-02 00:24:41 TP0] Load weight end. type=MllamaForConditionalGeneration, dtype=torch.bfloat16, avail mem=56.75 GB\n",
      "[2024-11-02 00:24:41 TP0] Memory pool end. avail mem=11.53 GB\n",
      "[2024-11-02 00:24:42 TP0] Capture cuda graph begin. This can take up to several minutes.\n",
      "[2024-11-02 00:24:52 TP0] max_total_num_tokens=289349, max_prefill_tokens=16384, max_running_requests=2049, context_len=131072\n",
      "[2024-11-02 00:24:52] INFO:     Started server process [108249]\n",
      "[2024-11-02 00:24:52] INFO:     Waiting for application startup.\n",
      "[2024-11-02 00:24:52] INFO:     Application startup complete.\n",
      "[2024-11-02 00:24:52] INFO:     Uvicorn running on http://127.0.0.1:30010 (Press CTRL+C to quit)\n",
      "[2024-11-02 00:24:53] INFO:     127.0.0.1:43056 - \"GET /v1/models HTTP/1.1\" 200 OK\n",
      "[2024-11-02 00:24:53] INFO:     127.0.0.1:43072 - \"GET /get_model_info HTTP/1.1\" 200 OK\n",
      "[2024-11-02 00:24:53 TP0] Prefill batch. #new-seq: 1, #new-token: 7, #cached-token: 0, cache hit rate: 0.00%, token usage: 0.00, #running-req: 0, #queue-req: 0\n",
      "[2024-11-02 00:24:53] INFO:     127.0.0.1:43086 - \"POST /generate HTTP/1.1\" 200 OK\n",
      "[2024-11-02 00:24:53] The server is fired up and ready to roll!\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'><br><br>                    NOTE: Typically, the server runs in a separate terminal.<br>                    In this notebook, we run the server and notebook code together, so their outputs are combined.<br>                    To improve clarity, the server logs are displayed in the original black color, while the notebook outputs are highlighted in blue.<br>                    </strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from sglang.utils import (\n",
    "    execute_shell_command,\n",
    "    wait_for_server,\n",
    "    terminate_process,\n",
    "    print_highlight,\n",
    ")\n",
    "\n",
    "embedding_process = execute_shell_command(\n",
    "\"\"\"\n",
    "python3 -m sglang.launch_server --model-path meta-llama/Llama-3.2-11B-Vision-Instruct \\\n",
    "    --port=30010 --chat-template=llama_3_vision\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(\"http://localhost:30010\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Using cURL\n",
    "\n",
    "Once the server is up, you can send test requests using curl."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current\n",
      "                                 Dload  Upload   Total   Spent    Left  Speed\n",
      "100   485    0     0  100   485      0   2420 --:--:-- --:--:-- --:--:--  2412"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-11-02 00:26:23 TP0] Prefill batch. #new-seq: 1, #new-token: 1, #cached-token: 6462, cache hit rate: 49.97%, token usage: 0.02, #running-req: 0, #queue-req: 0\n",
      "[2024-11-02 00:26:24] INFO:     127.0.0.1:39828 - \"POST /v1/chat/completions HTTP/1.1\" 200 OK\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100   965  100   480  100   485    789    797 --:--:-- --:--:-- --:--:--  1584\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>{\"id\":\"5e9e1c80809f492a926a2634c3d162d0\",\"object\":\"chat.completion\",\"created\":1730507184,\"model\":\"meta-llama/Llama-3.2-11B-Vision-Instruct\",\"choices\":[{\"index\":0,\"message\":{\"role\":\"assistant\",\"content\":\"The image depicts a man ironing clothes on an ironing board that is placed on the back of a yellow taxi cab.\"},\"logprobs\":null,\"finish_reason\":\"stop\",\"matched_stop\":128009}],\"usage\":{\"prompt_tokens\":6463,\"total_tokens\":6489,\"completion_tokens\":26,\"prompt_tokens_details\":null}}</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import subprocess\n",
    "\n",
    "curl_command = \"\"\"\n",
    "curl http://localhost:30010/v1/chat/completions \\\n",
    "  -H \"Content-Type: application/json\" \\\n",
    "  -H \"Authorization: Bearer None\" \\\n",
    "  -d '{\n",
    "    \"model\": \"meta-llama/Llama-3.2-11B-Vision-Instruct\",\n",
    "    \"messages\": [\n",
    "      {\n",
    "        \"role\": \"user\",\n",
    "        \"content\": [\n",
    "          {\n",
    "            \"type\": \"text\",\n",
    "            \"text\": \"What’s in this image?\"\n",
    "          },\n",
    "          {\n",
    "            \"type\": \"image_url\",\n",
    "            \"image_url\": {\n",
    "              \"url\": \"https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true\"\n",
    "            }\n",
    "          }\n",
    "        ]\n",
    "      }\n",
    "    ],\n",
    "    \"max_tokens\": 300\n",
    "  }'\n",
    "\"\"\"\n",
    "\n",
    "response = subprocess.check_output(curl_command, shell=True).decode()\n",
    "print_highlight(response)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Using OpenAI Python Client\n",
    "\n",
    "You can use the OpenAI Python API library to send requests."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-11-02 00:26:33 TP0] Prefill batch. #new-seq: 1, #new-token: 11, #cached-token: 6452, cache hit rate: 66.58%, token usage: 0.02, #running-req: 0, #queue-req: 0\n",
      "[2024-11-02 00:26:34 TP0] Decode batch. #running-req: 1, #token: 6477, token usage: 0.02, gen throughput (token/s): 0.77, #queue-req: 0\n",
      "[2024-11-02 00:26:34] INFO:     127.0.0.1:43258 - \"POST /v1/chat/completions HTTP/1.1\" 200 OK\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>The image shows a man ironing clothes on the back of a yellow taxi cab.</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from openai import OpenAI\n",
    "\n",
    "client = OpenAI(base_url=\"http://localhost:30010/v1\", api_key=\"None\")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Llama-3.2-11B-Vision-Instruct\",\n",
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": [\n",
    "                {\n",
    "                    \"type\": \"text\",\n",
    "                    \"text\": \"What is in this image?\",\n",
    "                },\n",
    "                {\n",
    "                    \"type\": \"image_url\",\n",
    "                    \"image_url\": {\"url\": \"https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true\"},\n",
    "                },\n",
    "            ],\n",
    "        }\n",
    "    ],\n",
    "    max_tokens=300,\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Multiple-Image Inputs\n",
    "\n",
    "The server also supports multiple images and interleaved text and images if the model supports it."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-11-02 00:20:30 TP0] Prefill batch. #new-seq: 1, #new-token: 1, #cached-token: 12894, cache hit rate: 83.27%, token usage: 0.04, #running-req: 0, #queue-req: 0\n",
      "[2024-11-02 00:20:30 TP0] Decode batch. #running-req: 1, #token: 12903, token usage: 0.04, gen throughput (token/s): 2.02, #queue-req: 0\n",
      "[2024-11-02 00:20:30 TP0] Decode batch. #running-req: 1, #token: 12943, token usage: 0.04, gen throughput (token/s): 105.52, #queue-req: 0\n",
      "[2024-11-02 00:20:30] INFO:     127.0.0.1:41386 - \"POST /v1/chat/completions HTTP/1.1\" 200 OK\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>The first image shows a man in a yellow shirt ironing a shirt on the back of a yellow taxi cab, with a red line connecting the two objects. The second image shows a large orange \"S\" and \"G\" on a white background, with a red line connecting them.</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from openai import OpenAI\n",
    "\n",
    "client = OpenAI(base_url=\"http://localhost:30010/v1\", api_key=\"None\")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Llama-3.2-11B-Vision-Instruct\",\n",
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": [\n",
    "                {\n",
    "                    \"type\": \"image_url\",\n",
    "                    \"image_url\": {\n",
    "                        \"url\": \"https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true\",\n",
    "                    },\n",
    "                },\n",
    "                {\n",
    "                    \"type\": \"image_url\",\n",
    "                    \"image_url\": {\n",
    "                        \"url\": \"https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png\",\n",
    "                    },\n",
    "                },\n",
    "                {\n",
    "                    \"type\": \"text\",\n",
    "                    \"text\": \"I have two very different images. They are not related at all. \"\n",
    "                            \"Please describe the first image in one sentence, and then describe the second image in another sentence.\",\n",
    "                },\n",
    "            ],\n",
    "        }\n",
    "    ],\n",
    "    temperature=0,\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(embedding_process)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Chat Template\n",
    "\n",
    "As mentioned before, if you do not specify a vision model's `--chat-template`, the server uses Hugging Face's default template, which only supports text.\n",
    "\n",
    "We list popular vision models with their chat templates:\n",
    "\n",
    "- [meta-llama/Llama-3.2-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) uses `llama_3_vision`.\n",
    "- [LLaVA-NeXT](https://huggingface.co/collections/lmms-lab/llava-next-6623288e2d61edba3ddbf5ff) uses `chatml-llava`.\n",
    "- [LlaVA-OneVision](https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-ov) uses `chatml-llava`.\n",
    "- [Llama3-LLaVA-NeXT](https://huggingface.co/lmms-lab/llama3-llava-next-8b) uses `llava_llama_3`.\n",
    "- [LLaVA-v1.5 / 1.6](https://huggingface.co/liuhaotian/llava-v1.6-34b) uses `vicuna_v1.1`."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}