bench_cublas_grouped_gemm.py 8.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import argparse

import torch
import triton
import triton.language as tl
from sgl_kernel import cublas_grouped_gemm

WEIGHT_CONFIGS = {
    "DeepSeek-V2-Lite": {
        "num_routed_experts": 64,
        "ffn_shapes": [
            [2048, 2816],
            [1408, 2048],
        ],
    },
    "DeepSeek-V2": {
        "num_routed_experts": 160,
        "ffn_shapes": [
            [5120, 3072],
            [1536, 5120],
        ],
    },
}


# This Triton Grouped Gemm Kernel is adapted from
# https://triton-lang.org/main/getting-started/tutorials/08-grouped-gemm.html
@triton.jit
def grouped_matmul_kernel(
    # device tensor of matrices pointers
    group_a_ptrs,
    group_b_ptrs,
    group_c_ptrs,
    # device tensor of gemm sizes. its shape is [group_size, 3]
    # dim 0 is group_size, dim 1 is the values of <M, N, K> of each gemm
    group_gemm_sizes,
    # device tensor of leading dimension sizes. its shape is [group_size, 3]
    # dim 0 is group_size, dim 1 is the values of <lda, ldb, ldc> of each gemm
    g_lds,
    # Factors for multiplication.
    alphas,
    betas,
    # number of gemms
    group_size,
    # number of virtual SM
    NUM_SM: tl.constexpr,
    # tile sizes
    BLOCK_SIZE_M: tl.constexpr,
    BLOCK_SIZE_N: tl.constexpr,
    BLOCK_SIZE_K: tl.constexpr,
):
    tile_idx = tl.program_id(0)
    last_problem_end = 0
    for g in range(group_size):
        # get the gemm size of the current problem
        gm = tl.load(group_gemm_sizes + g * 3)
        gn = tl.load(group_gemm_sizes + g * 3 + 1)
        gk = tl.load(group_gemm_sizes + g * 3 + 2)
        num_m_tiles = tl.cdiv(gm, BLOCK_SIZE_M)
        num_n_tiles = tl.cdiv(gn, BLOCK_SIZE_N)
        num_tiles = num_m_tiles * num_n_tiles
        # load multiplication factors
        alpha = tl.load(alphas + g)
        beta = tl.load(betas + g)
        # iterate through the tiles in the current gemm problem
        while tile_idx >= last_problem_end and tile_idx < last_problem_end + num_tiles:
            # pick up a tile from the current gemm problem
            k = gk
            lda = tl.load(g_lds + g * 3)
            ldb = tl.load(g_lds + g * 3 + 1)
            ldc = tl.load(g_lds + g * 3 + 2)
            a_ptr = tl.load(group_a_ptrs + g).to(tl.pointer_type(tl.float16))
            b_ptr = tl.load(group_b_ptrs + g).to(tl.pointer_type(tl.float16))
            c_ptr = tl.load(group_c_ptrs + g).to(tl.pointer_type(tl.float16))
            # figure out tile coordinates
            tile_idx_in_gemm = tile_idx - last_problem_end
            tile_m_idx = tile_idx_in_gemm // num_n_tiles
            tile_n_idx = tile_idx_in_gemm % num_n_tiles

            # do regular gemm here
            offs_am = tile_m_idx * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
            offs_bn = tile_n_idx * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
            offs_k = tl.arange(0, BLOCK_SIZE_K)
            a_ptrs = a_ptr + offs_am[:, None] * lda + offs_k[None, :]
            b_ptrs = b_ptr + offs_k[:, None] * ldb + offs_bn[None, :]
            accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
            for kk in range(0, tl.cdiv(k, BLOCK_SIZE_K)):
                a = tl.load(
                    a_ptrs,
                    mask=(offs_am[:, None] < gm)
                    and (offs_k[None, :] < gk - kk * BLOCK_SIZE_K),
                    other=0.0,
                )
                b = tl.load(
                    b_ptrs,
                    mask=(offs_k[:, None] < gk - kk * BLOCK_SIZE_K)
                    and (offs_bn[None, :] < gn),
                    other=0.0,
                )
                accumulator += tl.dot(a, b)
                a_ptrs += BLOCK_SIZE_K
                b_ptrs += BLOCK_SIZE_K * ldb
            accumulator *= alpha
            c = accumulator.to(tl.float16)

            offs_cm = tile_m_idx * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
            offs_cn = tile_n_idx * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
            c_ptrs = c_ptr + ldc * offs_cm[:, None] + offs_cn[None, :]
            output_mask = (offs_am[:, None] < gm) and (offs_bn[None, :] < gn)
            c += beta * tl.load(c_ptrs, mask=output_mask)
            tl.store(c_ptrs, c, mask=output_mask)

            # go to the next tile by advancing NUM_SM
            tile_idx += NUM_SM

        # get ready to go to the next gemm problem
        last_problem_end = last_problem_end + num_tiles


def triton_perf_fn(group_A, group_B, group_C, dtype):
    # We put the process of matrix lengths and pointers here out of fairness,
    # since cublas_grouped_gemm kernel also does these work.
    group_size = len(group_A)
    A_addrs = []
    B_addrs = []
    C_addrs = []
    g_sizes = []
    g_lds = []
    alphas = [1.0] * group_size
    betas = [0.0] * group_size
    for i in range(group_size):
        M, N, K = group_A[i].shape[0], group_B[i].shape[1], group_A[i].shape[1]
        g_sizes += [M, N, K]
        g_lds += [K, N, N]
        A_addrs.append(group_A[i].data_ptr())
        B_addrs.append(group_B[i].data_ptr())
        C_addrs.append(group_C[i].data_ptr())

    d_a_ptrs = torch.tensor(A_addrs, device="cuda")
    d_b_ptrs = torch.tensor(B_addrs, device="cuda")
    d_c_ptrs = torch.tensor(C_addrs, device="cuda")
    d_g_sizes = torch.tensor(g_sizes, dtype=torch.int32, device="cuda")
    d_g_lds = torch.tensor(g_lds, dtype=torch.int32, device="cuda")
    d_alphas = torch.tensor(alphas, dtype=torch.float32, device="cuda")
    d_betas = torch.tensor(betas, dtype=torch.float32, device="cuda")

    NUM_SM = 128
    grid = (NUM_SM,)
    grouped_matmul_kernel[grid](
        d_a_ptrs,
        d_b_ptrs,
        d_c_ptrs,
        d_g_sizes,
        d_g_lds,
        d_alphas,
        d_betas,
        group_size,
        NUM_SM=NUM_SM,
        BLOCK_SIZE_M=128,
        BLOCK_SIZE_N=128,
        BLOCK_SIZE_K=32,
    )


def cublas_perf_fn(group_A, group_B, group_C, dtype):
    cublas_grouped_gemm(group_A, group_B, group_C, dtype)


@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=["M"],
        x_vals=[1, 16, 32, 64, 128, 256, 512, 1024, 2048],
        x_log=False,
        line_arg="provider",
        line_vals=[
            "triton",
            "cublas",
        ],
        line_names=[
            "triton",
            "cublas",
        ],
        styles=[("green", "-"), ("blue", "-")],
        ylabel="gbps",
        plot_name="grouped gemm",
        args={},
    )
)
def benchmark(M, provider, N, K):
    group_size = 20  # Number of used experts per gpu is usually around 20
    group_A = []
    group_B_row_major = []
    group_B_col_major = []
    group_C = []
    dtype = torch.float16
    for i in range(group_size):
        A = torch.rand((M, K), device="cuda", dtype=dtype)
        B_row_major = torch.rand((K, N), device="cuda", dtype=dtype)
        B_col_major = torch.rand((N, K), device="cuda", dtype=dtype)
        C = torch.empty((M, N), device="cuda", dtype=dtype)
        group_A.append(A)
        group_B_row_major.append(B_row_major)
        group_B_col_major.append(B_col_major)
        group_C.append(C)

    quantiles = [0.5, 0.2, 0.8]
    if "triton" in provider:
        ms, min_ms, max_ms = triton.testing.do_bench(
            lambda: triton_perf_fn(group_A, group_B_row_major, group_C, dtype),
            quantiles=quantiles,
        )
    elif "cublas" in provider:
        ms, min_ms, max_ms = triton.testing.do_bench(
            lambda: cublas_perf_fn(group_A, group_B_col_major, group_C, dtype),
            quantiles=quantiles,
        )

    gbps = (
        lambda ms: group_size
        * (2 * M * N * K + 2 * M * N)
        * group_A[0].element_size()
        * 1e-9
        / (ms * 1e-3)
    )
    return gbps(ms), gbps(max_ms), gbps(min_ms)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--models",
        nargs="+",
        type=str,
        default=["DeepSeek-V2"],
        help="List of models to benchmark",
    )
    parser.add_argument(
        "--tp-size",
        type=int,
        default=8,
        help="Tensor parallel size",
    )
    args = parser.parse_args()
    for model in args.models:
        assert model in WEIGHT_CONFIGS
        num_experts_per_device = (
            WEIGHT_CONFIGS[model]["num_routed_experts"] // args.tp_size
        )
        for K, N in WEIGHT_CONFIGS[model]["ffn_shapes"]:
            print(
                f"{model} N={N} K={K} tp_size={args.tp_size} "
                f"group_size=num_experts_per_device={num_experts_per_device}: "
            )
            benchmark.run(
                print_data=True,
                show_plots=True,
                save_path="bench_grouped_gemm_res",
                N=N,
                K=K,
            )

    print("Benchmark finished!")