"tools/vscode:/vscode.git/clone" did not exist on "ac0f79aa3ee25f4f957c950b64d4554992c61d6a"
test_vision_chunked_prefill.py 6.56 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
"""
Usage:
python3 -m unittest test_vision_chunked_prefill.TestVisionChunkedPrefill.test_chunked_prefill
"""

import base64
import io
import os
import unittest
from concurrent.futures import ThreadPoolExecutor
from typing import Union

import numpy as np
import requests
from PIL import Image

from sglang.srt.utils import kill_process_tree
from sglang.test.test_utils import (
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
21
    CustomTestCase,
22
23
24
25
    popen_launch_server,
)


26
class TestVisionChunkedPrefill(CustomTestCase):
27

28
    def prepare_video_messages(self, video_path, max_frames_num=8):
29
30
31
32
33
34
        # We import decord here to avoid a strange Segmentation fault (core dumped) issue.
        # The following import order will cause Segmentation fault.
        # import decord
        # from transformers import AutoTokenizer
        from decord import VideoReader, cpu

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        vr = VideoReader(video_path, ctx=cpu(0))
        total_frame_num = len(vr)
        uniform_sampled_frames = np.linspace(
            0, total_frame_num - 1, max_frames_num, dtype=int
        )
        frame_idx = uniform_sampled_frames.tolist()
        frames = vr.get_batch(frame_idx).asnumpy()

        base64_frames = []
        for frame in frames:
            pil_img = Image.fromarray(frame)
            buff = io.BytesIO()
            pil_img.save(buff, format="JPEG")
            base64_str = base64.b64encode(buff.getvalue()).decode("utf-8")
            base64_frames.append(base64_str)

        messages = [{"role": "user", "content": []}]
        frame_format = {
            "type": "image_url",
            "image_url": {"url": "data:image/jpeg;base64,{}"},
            "modalities": "video",
        }

        for base64_frame in base64_frames:
            frame_format["image_url"]["url"] = "data:image/jpeg;base64,{}".format(
                base64_frame
            )
            messages[0]["content"].append(frame_format.copy())

        prompt = {"type": "text", "text": "Please describe the video briefly."}
        messages[0]["content"].append(prompt)

        return messages

    def get_prompt_from_messages(self, messages):
        text = (
            "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
            "<|im_start|>user\n"
        )
        image_data = []
        for content in messages[0]["content"]:
            if content["type"] == "image_url":
                text += "<image>\n"
                image_data.append(content["image_url"]["url"])
        text += "Please describe the video briefly.<|im_end|>\n<|im_start|>assistant\n"
        return text, image_data

    def generate(self, text, image_data):
        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": text,
                "image_data": image_data,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": 32,
                    "no_stop_trim": True,
                    "skip_special_tokens": False,
                },
                "modalities": ["multi-images"],
            },
        ).json()
        return response["text"]

    def generate_for_video(self, batch, num_frame) -> Union[str, list[str]]:
        # prepare the video input about Steven introducing ipod nano
        url = "https://raw.githubusercontent.com/evolvinglmms-lab/sglang/dev/onevision_local/assets/jobs.mp4"
        cache_dir = os.path.expanduser("~/.cache")
        file_path = os.path.join(cache_dir, "jobs.mp4")
        os.makedirs(cache_dir, exist_ok=True)
        if not os.path.exists(file_path):
            response = requests.get(url)
            response.raise_for_status()
            with open(file_path, "wb") as f:
                f.write(response.content)

        if not batch:
            assert isinstance(num_frame, int)
            messages = self.prepare_video_messages(file_path, max_frames_num=num_frame)
            text, image_data = self.get_prompt_from_messages(messages)
            return self.generate(text, image_data)
        else:
            assert isinstance(num_frame, list)
            func_args = []
            for max_frames_num in num_frame:
                messages = self.prepare_video_messages(
                    file_path,
                    max_frames_num=max_frames_num,
                )
                text, image_data = self.get_prompt_from_messages(messages)
                func_args.append((text, image_data))

            with ThreadPoolExecutor(max_workers=10) as executor:
                responses = list(executor.map(lambda p: self.generate(*p), func_args))

            return responses

132
    def launch_server(self, chunked_prefill_size) -> int:
133
134
135
136
137
138
139
140
141
142
143
144
145
        # launch server
        model = "lmms-lab/llava-onevision-qwen2-7b-ov"
        # model = "meta-llama/Llama-3.2-11B-Vision-Instruct"
        self.base_url = DEFAULT_URL_FOR_TEST
        process = popen_launch_server(
            model,
            self.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--chunked-prefill-size",
                f"{chunked_prefill_size}",
            ],
        )
146
147
148
149
        return process.pid

    def _test_chunked_prefill(self, batches, num_frames):
        # Chunked
150
        chunked_server_pid = self.launch_server(chunked_prefill_size=1024)
151
        try:
152
153
154
155
156
157
            outputs_chunked = []
            for batch, num_frame in zip(batches, num_frames):
                output_chunked = self.generate_for_video(
                    batch=batch, num_frame=num_frame
                )
                outputs_chunked += [output_chunked]
158
        finally:
159
            kill_process_tree(chunked_server_pid)
160

161
162
163
164
165
166
167
168
169
        # None-chunked
        try:
            no_chunked_server_pid = self.launch_server(chunked_prefill_size=-1)
            outputs_no_chunked = []
            for batch, num_frame in zip(batches, num_frames):
                output_no_chunked = self.generate_for_video(
                    batch=batch, num_frame=num_frame
                )
                outputs_no_chunked += [output_no_chunked]
170

171
172
        finally:
            kill_process_tree(no_chunked_server_pid)
173

174
175
176
177
178
179
180
181
        for output_chunked, output_no_chunked in zip(
            outputs_chunked, outputs_no_chunked
        ):
            print("output with chunked prefill:")
            print(output_chunked)
            print("output without chunked prefill:")
            print(output_no_chunked)
            assert output_chunked == output_no_chunked
182

183
184
    def test_chunked_prefill(self):
        self._test_chunked_prefill(batches=[False, True], num_frames=[1, [2, 6, 8, 10]])
185
186
187
188


if __name__ == "__main__":
    unittest.main()