bench_other.py 4.41 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import argparse
import asyncio
from concurrent.futures import ThreadPoolExecutor
import json
from functools import partial
import time

import numpy as np
from sglang.test.test_utils import add_common_other_args_and_parse, call_select_lightllm, call_select_vllm
from sglang.utils import read_jsonl


def get_one_example(lines, i, include_answer):
    ret = lines[i]["activity_label"] + ": " +  lines[i]["ctx"] + " "
    if include_answer:
        ret += lines[i]["endings"][lines[i]["label"]]
    return ret


def get_few_shot_examples(lines, k):
    ret = ""
    for i in range(k):
        ret += get_one_example(lines, i, True) + "\n\n"
    return ret


def main(args):
    lines = read_jsonl(args.data_path)

    # Construct prompts
    k = args.num_shot
    few_shot_examples = get_few_shot_examples(lines, k)

    questions = []
    choices = []
    labels = []
    for i in range(len(lines[:args.num_questions])):
        questions.append(get_one_example(lines, i, False))
        choices.append(lines[i]["endings"])
        labels.append(lines[i]["label"])

    preds = [None] * len(labels)

    # Select backend
    if args.backend == "lightllm":
        url = f"{args.host}:{args.port}/generate"
        call_select = partial(call_select_lightllm, url=url)
    elif args.backend == "vllm":
        url = f"{args.host}:{args.port}/generate"
        call_select = partial(call_select_vllm, url=url)
    elif args.backend == "guidance":
        from guidance import models, select

        model = models.LlamaCpp("/home/ubuntu/model_weights/Llama-2-7b-chat.gguf", n_gpu_layers=-1, n_ctx=4096)

        def call_select(context, choices):
            out = model + context + select(choices, name="answer")
            return choices.index(out["answer"])

    elif args.backend == "lmql":
        import lmql
        model = lmql.model("meta-llama/Llama-2-7b-chat-hf",
           endpoint=f"{args.host}:{args.port}")

        @lmql.query(model=model)
        async def program(ctx, choices):
            '''lmql
            """{ctx}[ANSWER]""" where ANSWER in set(choices)
            return ANSWER
            '''

        async def call_select(context, choices):
            answer = await program(ctx=context, choices=choices, temperature=0)
            return choices.index(answer)

    else:
        raise ValueError(f"Invalid backend: {args.backend}")

    # Run requests
    if args.backend != "lmql":
        # Use thread pool
        def get_one_answer(i):
            preds[i] = call_select(
                context=few_shot_examples + questions[i],
                choices=choices[i])

        tic = time.time()
        if args.parallel == 1:
            for i in range(len(questions)):
                get_one_answer(i)
        else:
            with ThreadPoolExecutor(args.parallel) as executor:
                executor.map(get_one_answer, list(range(len(questions))))
    else:
        # Use asyncio
        async def batched_call(batch_size):
            for i in range(0, len(questions), batch_size):
                tasks = []
                for q, c in zip(questions[i:i+batch_size], choices[i:i+batch_size]):
                    tasks.append(call_select(
                        context=few_shot_examples + q,
                        choices=c))
                rets = await asyncio.gather(*tasks)
                for j in range(len(rets)):
                    preds[i+j] = rets[j]

        tic = time.time()
        asyncio.run(batched_call(batch_size=args.parallel))

    latency = time.time() - tic

    # Compute accuracy
    acc = np.mean(np.array(preds) == np.array(labels))
    print(f"Latency: {latency:.3f}")
    print(f"Accuracy: {acc:.3f}")

    # Write results
    with open(args.result_file, "a") as fout:
        value = {
            "task": "hellaswag",
            "backend": args.backend,
            "num_gpus": 1,
            "latency": round(latency, 3),
            "accuracy": round(acc, 3),
            "num_requests": args.num_questions,
            "other": {
                "num_questions": args.num_questions,
                "parallel": args.parallel,
            }
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--num-shot", type=int, default=20)
    parser.add_argument("--data-path", type=str, default="hellaswag_val.jsonl")
    parser.add_argument("--num-questions", type=int, default=100)
    args = add_common_other_args_and_parse(parser)
    main(args)