test_batch_invariant_ops.py 6.27 KB
Newer Older
Stefan He's avatar
Stefan He committed
1
2
3
4
5
6
# Adapted from https://github.com/thinking-machines-lab/batch_invariant_ops/blob/main/test_batch_invariance.py
import math
import unittest

import torch

7
from sglang.srt.batch_invariant_ops import batch_invariant_ops
Stefan He's avatar
Stefan He committed
8
9
10
11
12
13
14
15
16
17
18
19
from sglang.srt.batch_invariant_ops.batch_invariant_ops import set_batch_invariant_mode
from sglang.test.test_utils import CustomTestCase

device_type = getattr(torch.accelerator.current_accelerator(), "type", "cpu")
torch.set_default_device(device_type)

# Just to get the logging out of the way
with set_batch_invariant_mode(True):
    pass


class TestBatchInvariantOps(CustomTestCase):
20
21
22
23
24
25
26
27
    @classmethod
    def setUpClass(cls):
        batch_invariant_ops._ENABLE_MM_COMPARISON_TEST = True

    @classmethod
    def tearDownClass(cls):
        batch_invariant_ops._ENABLE_MM_COMPARISON_TEST = False

Stefan He's avatar
Stefan He committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    def _test_batch_invariance(self, M, K, N, dtype):
        """
        Test that matrix operations produce identical results for:
        - Method 1: Matrix-vector multiplication (batch size 1)
        - Method 2: Matrix-matrix multiplication, then slice (full batch)
        """
        a = torch.linspace(-100, 100, M * K, dtype=dtype).reshape(M, K)

        # Create non-contiguous tensor
        b = torch.linspace(-100, 100, K * N, dtype=dtype).reshape(N, K)
        b = b.transpose(0, 1)

        # Method 1: Matrix-vector multiplication (batch size 1)
        out1 = torch.mm(a[:1], b)

        # Method 2: Matrix-matrix multiplication, then slice (full batch)
        out2_pre = torch.mm(a, b)
        out2 = out2_pre[:1]

        # Check if results are identical
        diff = (out1 - out2).abs().max()
        return diff.item()

    def _run_multiple_iterations(self, iters, M, K, N, dtype):
        """Run multiple iterations and collect diff statistics"""
        difflist = []
        for _ in range(iters):
            diff = self._test_batch_invariance(M, K, N, dtype)
            difflist.append(diff)
        return difflist

    def _assert_batch_invariant_results(self, difflist, dtype, test_name):
        """
        Assert that in batch-invariant mode:
        1. All diffs must not be NaN
        2. All diffs must be exactly 0
        3. Max, min, and diff of diffs must all be 0
        """
        max_diff = max(difflist)
        min_diff = min(difflist)
        diff_range = max_diff - min_diff

        # Check for NaN values
        self.assertFalse(
            math.isnan(max_diff), f"{test_name}: max_diff is NaN for {dtype}"
        )
        self.assertFalse(
            math.isnan(min_diff), f"{test_name}: min_diff is NaN for {dtype}"
        )
        self.assertFalse(
            math.isnan(diff_range), f"{test_name}: diff_range is NaN for {dtype}"
        )

        # Check that all diffs are exactly 0
        self.assertEqual(
            max_diff,
            0.0,
            f"{test_name}: max_diff must be 0 in batch-invariant mode, got {max_diff} for {dtype}",
        )
        self.assertEqual(
            min_diff,
            0.0,
            f"{test_name}: min_diff must be 0 in batch-invariant mode, got {min_diff} for {dtype}",
        )
        self.assertEqual(
            diff_range,
            0.0,
            f"{test_name}: diff_range must be 0 in batch-invariant mode, got {diff_range} for {dtype}",
        )

    def test_small_matrices(self):
        """Test batch invariance with small matrix sizes"""
        test_cases = [
            ("Small-1", 8, 64, 128),
            ("Small-2", 16, 128, 256),
            ("Small-3", 4, 32, 64),
        ]

        for name, M, K, N in test_cases:
            with self.subTest(name=name, M=M, K=K, N=N):
                for dtype in [torch.float32, torch.bfloat16]:
                    with self.subTest(dtype=dtype):
                        # Run with batch-invariant mode
                        with set_batch_invariant_mode(True):
                            difflist = self._run_multiple_iterations(
                                iters=5, M=M, K=K, N=N, dtype=dtype
                            )
                            self._assert_batch_invariant_results(difflist, dtype, name)

    def test_medium_matrices(self):
        """Test batch invariance with medium matrix sizes"""
        test_cases = [
            ("Medium-1", 32, 128, 1024),
            ("Medium-2", 64, 512, 2048),
            ("Medium-3", 24, 192, 768),
        ]

        for name, M, K, N in test_cases:
            with self.subTest(name=name, M=M, K=K, N=N):
                for dtype in [torch.float32, torch.bfloat16]:
                    with self.subTest(dtype=dtype):
                        # Run with batch-invariant mode
                        with set_batch_invariant_mode(True):
                            difflist = self._run_multiple_iterations(
                                iters=5, M=M, K=K, N=N, dtype=dtype
                            )
                            self._assert_batch_invariant_results(difflist, dtype, name)

    def test_large_matrices(self):
        """Test batch invariance with large matrix sizes"""
        test_cases = [
            ("Large-1", 128, 1024, 4096),
            ("Large-2", 256, 2048, 8192),
            ("Large-3", 96, 768, 3072),
        ]

        for name, M, K, N in test_cases:
            with self.subTest(name=name, M=M, K=K, N=N):
                for dtype in [torch.float32, torch.bfloat16]:
                    with self.subTest(dtype=dtype):
                        # Run with batch-invariant mode
                        with set_batch_invariant_mode(True):
                            difflist = self._run_multiple_iterations(
                                iters=5, M=M, K=K, N=N, dtype=dtype
                            )
                            self._assert_batch_invariant_results(difflist, dtype, name)

    def test_without_batch_invariant_mode(self):
        """
        Test that without batch-invariant mode, results may differ.
        This test demonstrates the difference batch-invariant mode makes.
        """
        M, K, N = 32, 128, 1024
        dtype = torch.float32

        # Run without batch-invariant mode
        with set_batch_invariant_mode(False):
            difflist = self._run_multiple_iterations(
                iters=5, M=M, K=K, N=N, dtype=dtype
            )
            print(f"Without batch-invariant mode, we get diffs: {difflist}")


if __name__ == "__main__":
    unittest.main()