quant_utils.py 9.06 KB
Newer Older
litzh's avatar
litzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import torch
from loguru import logger

try:
    from qtorch.quant import float_quantize
except Exception:
    logger.warning("qtorch not found, please install qtorch.Please install qtorch (pip install qtorch).")
    float_quantize = None

try:
    from vllm import _custom_ops as ops
except ImportError:
    ops = None


class BaseQuantizer(object):
    def __init__(self, bit, symmetric, granularity, **kwargs):
        self.bit = bit
        self.sym = symmetric
        self.granularity = granularity
        self.kwargs = kwargs
        if self.granularity == "per_group":
            self.group_size = self.kwargs["group_size"]
        self.calib_algo = self.kwargs.get("calib_algo", "minmax")

    def get_tensor_range(self, tensor):
        if self.calib_algo == "minmax":
            return self.get_minmax_range(tensor)
        elif self.calib_algo == "mse":
            return self.get_mse_range(tensor)
        else:
            raise ValueError(f"Unsupported calibration algorithm: {self.calib_algo}")

    def get_minmax_range(self, tensor):
        if self.granularity == "per_tensor":
            max_val = torch.max(tensor)
            min_val = torch.min(tensor)
        else:
            max_val = tensor.amax(dim=-1, keepdim=True)
            min_val = tensor.amin(dim=-1, keepdim=True)
        return (min_val, max_val)

    def get_mse_range(self, tensor):
        raise NotImplementedError

    def get_qparams(self, tensor_range, device):
        min_val, max_val = tensor_range[0], tensor_range[1]
        qmin = self.qmin.to(device)
        qmax = self.qmax.to(device)
        if self.sym:
            abs_max = torch.max(max_val.abs(), min_val.abs())
            abs_max = abs_max.clamp(min=1e-5)
            scales = abs_max / qmax
            zeros = torch.tensor(0.0)
        else:
            scales = (max_val - min_val).clamp(min=1e-5) / (qmax - qmin)
            zeros = (qmin - torch.round(min_val / scales)).clamp(qmin, qmax)
        return scales, zeros, qmax, qmin

    def reshape_tensor(self, tensor, allow_padding=False):
        if self.granularity == "per_group":
            t = tensor.reshape(-1, self.group_size)
        else:
            t = tensor
        return t

    def restore_tensor(self, tensor, shape):
        if tensor.shape == shape:
            t = tensor
        else:
            t = tensor.reshape(shape)
        return t

    def get_tensor_qparams(self, tensor):
        tensor = self.reshape_tensor(tensor)
        tensor_range = self.get_tensor_range(tensor)
        scales, zeros, qmax, qmin = self.get_qparams(tensor_range, tensor.device)
        return tensor, scales, zeros, qmax, qmin

    def fake_quant_tensor(self, tensor):
        org_shape = tensor.shape
        org_dtype = tensor.dtype
        tensor, scales, zeros, qmax, qmin = self.get_tensor_qparams(tensor)
        tensor = self.quant_dequant(tensor, scales, zeros, qmax, qmin)
        tensor = self.restore_tensor(tensor, org_shape).to(org_dtype)
        return tensor

    def real_quant_tensor(self, tensor):
        org_shape = tensor.shape
        tensor, scales, zeros, qmax, qmin = self.get_tensor_qparams(tensor)
        tensor = self.quant(tensor, scales, zeros, qmax, qmin)
        tensor = self.restore_tensor(tensor, org_shape)
        if self.sym:
            zeros = None
        return tensor, scales, zeros


class IntegerQuantizer(BaseQuantizer):
    def __init__(self, bit, symmetric, granularity, **kwargs):
        super().__init__(bit, symmetric, granularity, **kwargs)
        if "int_range" in self.kwargs:
            self.qmin = self.kwargs["int_range"][0]
            self.qmax = self.kwargs["int_range"][1]
        else:
            if self.sym:
                self.qmin = -(2 ** (self.bit - 1))
                self.qmax = 2 ** (self.bit - 1) - 1
            else:
                self.qmin = 0.0
                self.qmax = 2**self.bit - 1

        self.qmin = torch.tensor(self.qmin)
        self.qmax = torch.tensor(self.qmax)
        self.dst_nbins = 2**bit

    def quant(self, tensor, scales, zeros, qmax, qmin):
        tensor = torch.clamp(torch.round(tensor / scales) + zeros, qmin, qmax)
        return tensor

    def dequant(self, tensor, scales, zeros):
        tensor = (tensor - zeros) * scales
        return tensor

    def quant_dequant(
        self,
        tensor,
        scales,
        zeros,
        qmax,
        qmin,
    ):
        tensor = self.quant(tensor, scales, zeros, qmax, qmin)
        tensor = self.dequant(tensor, scales, zeros)
        return tensor


class FloatQuantizer(BaseQuantizer):
    def __init__(self, bit, symmetric, granularity, **kwargs):
        super().__init__(bit, symmetric, granularity, **kwargs)
        assert self.bit in ["e4m3", "e5m2"], f"Unsupported bit configuration: {self.bit}"
        assert self.sym

        if self.bit == "e4m3":
            self.e_bits = 4
            self.m_bits = 3
            self.fp_dtype = torch.float8_e4m3fn
        elif self.bit == "e5m2":
            self.e_bits = 5
            self.m_bits = 2
            self.fp_dtype = torch.float8_e5m2
        else:
            raise ValueError(f"Unsupported bit configuration: {self.bit}")

        finfo = torch.finfo(self.fp_dtype)
        self.qmin, self.qmax = finfo.min, finfo.max

        self.qmax = torch.tensor(self.qmax)
        self.qmin = torch.tensor(self.qmin)

    def quant(self, tensor, scales, zeros, qmax, qmin):
        scaled_tensor = tensor / scales + zeros
        scaled_tensor = torch.clip(scaled_tensor, self.qmin.cuda(), self.qmax.cuda())
        org_dtype = scaled_tensor.dtype
        q_tensor = float_quantize(scaled_tensor.float(), self.e_bits, self.m_bits, rounding="nearest")
        q_tensor.to(org_dtype)
        return q_tensor

    def dequant(self, tensor, scales, zeros):
        tensor = (tensor - zeros) * scales
        return tensor

    def quant_dequant(self, tensor, scales, zeros, qmax, qmin):
        tensor = self.quant(tensor, scales, zeros, qmax, qmin)
        tensor = self.dequant(tensor, scales, zeros)
        return tensor


def quant_naive_inplace(w, dtype):
    if w.dim() != 2:
        raise ValueError(f"Only 2D tensors supported. Got {w.dim()}D tensor")
    if torch.isnan(w).any():
        raise ValueError("Tensor contains NaN values")

    org_w_shape = w.shape
    max_val = w.abs().amax(dim=1, keepdim=True).clamp(min=1e-5)
    if dtype == torch.float8_e4m3fn:
        finfo = torch.finfo(dtype)
        qmin, qmax = finfo.min, finfo.max
    elif dtype == torch.int8:
        qmin, qmax = -128, 127
    else:
        raise ValueError(f"Unsupported dtype: {dtype}")

    scales = max_val / qmax
    w.div_(scales)
    w.clamp_(qmin, qmax)

    if dtype == torch.int8:
        w.round_()
    w = w.to(dtype)
    assert torch.isnan(scales).sum() == 0, "Scales contains NaN"
    assert torch.isnan(w).sum() == 0, "Quantized tensor contains NaN"

    scales = scales.view(org_w_shape[0], -1)
    w = w.view(org_w_shape)
    return w, scales


def dequant_naive_inplace(input_tensor, input_tensor_scale, dtype):
    out = torch.empty_like(input_tensor, dtype=dtype)
    out.copy_(input_tensor)
    out.mul_(input_tensor_scale)
    return out


def quant_fp8_vllm(input_tensor):
    input_tensor_fp8, input_tensor_scale = ops.scaled_fp8_quant(input_tensor, scale=None, scale_ub=None, use_per_token_if_dynamic=True)
    return input_tensor_fp8, input_tensor_scale


def dequant_fp8_vllm(input_tensor_fp8, input_tensor_scale, dtype):
    return input_tensor_fp8.to(dtype) * input_tensor_scale.to(dtype)


if __name__ == "__main__":
    weight = torch.randn(4096, 4096, dtype=torch.bfloat16).cuda()
    quantizer = IntegerQuantizer(4, False, "per_group", group_size=128)
    q_weight = quantizer.fake_quant_tensor(weight)
    logger.info(weight)
    logger.info(q_weight)
    logger.info(f"cosine = {torch.cosine_similarity(weight.view(1, -1).to(torch.float64), q_weight.view(1, -1).to(torch.float64))}")

    realq_weight, scales, zeros = quantizer.real_quant_tensor(weight)
    logger.info(f"realq_weight = {realq_weight}, {realq_weight.shape}")
    logger.info(f"scales = {scales}, {scales.shape}")
    logger.info(f"zeros = {zeros}, {zeros.shape}")

    weight = torch.randn(8192, 4096, dtype=torch.bfloat16).cuda()
    quantizer = FloatQuantizer("e4m3", True, "per_channel")
    q_weight = quantizer.fake_quant_tensor(weight)
    logger.info(weight)
    logger.info(q_weight)
    logger.info(f"cosine = {torch.cosine_similarity(weight.view(1, -1).to(torch.float64), q_weight.view(1, -1).to(torch.float64))}")

    realq_weight, scales, zeros = quantizer.real_quant_tensor(weight)
    logger.info(f"realq_weight = {realq_weight}, {realq_weight.shape}")
    logger.info(f"scales = {scales}, {scales.shape}")
    logger.info(f"zeros = {zeros}")

    input_tensor = torch.randn(4096, 4096, dtype=torch.bfloat16).cuda()
    input_tensor_fp8, input_tensor_scale = quant_fp8_vllm(input_tensor)
    dequant_tensor = dequant_fp8_vllm(input_tensor_fp8, input_tensor_scale, input_tensor.dtype)
    logger.info(input_tensor)
    logger.info(dequant_tensor)
    logger.info(f"cosine vllm fp8 quant/dequant = {torch.cosine_similarity(input_tensor.view(1, -1).to(torch.float64), dequant_tensor.view(1, -1).to(torch.float64))}")