input_info.py 13.1 KB
Newer Older
litzh's avatar
litzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import inspect
from dataclasses import dataclass, field

import torch


@dataclass
class T2VInputInfo:
    seed: int = field(default_factory=int)
    prompt: str = field(default_factory=str)
    prompt_enhanced: str = field(default_factory=str)
    negative_prompt: str = field(default_factory=str)
    save_result_path: str = field(default_factory=str)
    return_result_tensor: bool = field(default_factory=lambda: False)
    # shape related
    resize_mode: str = field(default_factory=str)
    latent_shape: list = field(default_factory=list)
    target_shape: list = field(default_factory=list)


@dataclass
class I2VInputInfo:
    seed: int = field(default_factory=int)
    prompt: str = field(default_factory=str)
    prompt_enhanced: str = field(default_factory=str)
    negative_prompt: str = field(default_factory=str)
    image_path: str = field(default_factory=str)
    save_result_path: str = field(default_factory=str)
    return_result_tensor: bool = field(default_factory=lambda: False)
    # shape related
    resize_mode: str = field(default_factory=str)
    original_shape: list = field(default_factory=list)
    resized_shape: list = field(default_factory=list)
    latent_shape: list = field(default_factory=list)
    target_shape: list = field(default_factory=list)
    # WorldPlay-specific: pose/action conditioning (optional)
    pose: str = field(default_factory=lambda: None)


@dataclass
class Flf2vInputInfo:
    seed: int = field(default_factory=int)
    prompt: str = field(default_factory=str)
    prompt_enhanced: str = field(default_factory=str)
    negative_prompt: str = field(default_factory=str)
    image_path: str = field(default_factory=str)
    last_frame_path: str = field(default_factory=str)
    save_result_path: str = field(default_factory=str)
    return_result_tensor: bool = field(default_factory=lambda: False)
    # shape related
    resize_mode: str = field(default_factory=str)
    original_shape: list = field(default_factory=list)
    resized_shape: list = field(default_factory=list)
    latent_shape: list = field(default_factory=list)
    target_shape: list = field(default_factory=list)


# Need Check
@dataclass
class VaceInputInfo:
    seed: int = field(default_factory=int)
    prompt: str = field(default_factory=str)
    prompt_enhanced: str = field(default_factory=str)
    negative_prompt: str = field(default_factory=str)
    src_ref_images: str = field(default_factory=str)
    src_video: str = field(default_factory=str)
    src_mask: str = field(default_factory=str)
    save_result_path: str = field(default_factory=str)
    return_result_tensor: bool = field(default_factory=lambda: False)
    # shape related
    resize_mode: str = field(default_factory=str)
    original_shape: list = field(default_factory=list)
    resized_shape: list = field(default_factory=list)
    latent_shape: list = field(default_factory=list)
    target_shape: list = field(default_factory=list)


@dataclass
class S2VInputInfo:
    seed: int = field(default_factory=int)
    prompt: str = field(default_factory=str)
    prompt_enhanced: str = field(default_factory=str)
    negative_prompt: str = field(default_factory=str)
    image_path: str = field(default_factory=str)
    audio_path: str = field(default_factory=str)
    audio_num: int = field(default_factory=int)
    with_mask: bool = field(default_factory=lambda: False)
    save_result_path: str = field(default_factory=str)
    return_result_tensor: bool = field(default_factory=lambda: False)
    stream_config: dict = field(default_factory=dict)
    # shape related
    resize_mode: str = field(default_factory=str)
    original_shape: list = field(default_factory=list)
    resized_shape: list = field(default_factory=list)
    latent_shape: list = field(default_factory=list)
    target_shape: list = field(default_factory=list)

    # prev info
    overlap_frame: torch.Tensor = field(default_factory=lambda: None)
    overlap_latent: torch.Tensor = field(default_factory=lambda: None)
    # input preprocess audio
    audio_clip: torch.Tensor = field(default_factory=lambda: None)


@dataclass
class RS2VInputInfo:
    seed: int = field(default_factory=int)
    prompt: str = field(default_factory=str)
    prompt_enhanced: str = field(default_factory=str)
    negative_prompt: str = field(default_factory=str)
    image_path: str = field(default_factory=str)
    audio_path: str = field(default_factory=str)
    audio_num: int = field(default_factory=int)
    with_mask: bool = field(default_factory=lambda: False)
    save_result_path: str = field(default_factory=str)
    return_result_tensor: bool = field(default_factory=lambda: False)
    stream_config: dict = field(default_factory=dict)
    # shape related
    resize_mode: str = field(default_factory=str)
    original_shape: list = field(default_factory=list)
    resized_shape: list = field(default_factory=list)
    latent_shape: list = field(default_factory=list)
    target_shape: list = field(default_factory=list)

    # prev info
    overlap_frame: torch.Tensor = field(default_factory=lambda: None)
    overlap_latent: torch.Tensor = field(default_factory=lambda: None)
    # input preprocess audio
    audio_clip: torch.Tensor = field(default_factory=lambda: None)
    # input reference state
    ref_state: int = field(default_factory=int)
    # flags for first and last clip
    is_first: bool = field(default_factory=lambda: False)
    is_last: bool = field(default_factory=lambda: False)


# Need Check
@dataclass
class AnimateInputInfo:
    seed: int = field(default_factory=int)
    prompt: str = field(default_factory=str)
    prompt_enhanced: str = field(default_factory=str)
    negative_prompt: str = field(default_factory=str)
    image_path: str = field(default_factory=str)
    src_pose_path: str = field(default_factory=str)
    src_face_path: str = field(default_factory=str)
    src_ref_images: str = field(default_factory=str)
    src_bg_path: str = field(default_factory=str)
    src_mask_path: str = field(default_factory=str)
    save_result_path: str = field(default_factory=str)
    return_result_tensor: bool = field(default_factory=lambda: False)
    # shape related
    resize_mode: str = field(default_factory=str)
    original_shape: list = field(default_factory=list)
    resized_shape: list = field(default_factory=list)
    latent_shape: list = field(default_factory=list)
    target_shape: list = field(default_factory=list)


@dataclass
class T2IInputInfo:
    seed: int = field(default_factory=int)
    prompt: str = field(default_factory=str)
    negative_prompt: str = field(default_factory=str)
    save_result_path: str = field(default_factory=str)
    return_result_tensor: bool = field(default_factory=lambda: False)
    # shape related
    resize_mode: str = field(default_factory=str)
    target_shape: list = field(default_factory=list)
    image_shapes: list = field(default_factory=list)
    txt_seq_lens: list = field(default_factory=list)  # [postive_txt_seq_len, negative_txt_seq_len]
    aspect_ratio: str = field(default_factory=str)


@dataclass
class I2IInputInfo:
    seed: int = field(default_factory=int)
    prompt: str = field(default_factory=str)
    negative_prompt: str = field(default_factory=str)
    image_path: str = field(default_factory=str)
    save_result_path: str = field(default_factory=str)
    return_result_tensor: bool = field(default_factory=lambda: False)
    # shape related
    resize_mode: str = field(default_factory=str)
    target_shape: list = field(default_factory=list)
    image_shapes: list = field(default_factory=list)
    txt_seq_lens: list = field(default_factory=list)  # [postive_txt_seq_len, negative_txt_seq_len]
    processed_image_size: int = field(default_factory=list)
    original_size: list = field(default_factory=list)
    aspect_ratio: str = field(default_factory=str)


@dataclass
class T2AVInputInfo:
    seed: int = field(default_factory=int)
    prompt: str = field(default_factory=str)
    prompt_enhanced: str = field(default_factory=str)
    negative_prompt: str = field(default_factory=str)
    save_result_path: str = field(default_factory=str)
    return_result_tensor: bool = field(default_factory=lambda: False)
    # shape related
    resize_mode: str = field(default_factory=str)
    audio_latent_shape: list = field(default_factory=list)
    latent_shape: list = field(default_factory=list)
    target_shape: list = field(default_factory=list)


@dataclass
class I2AVInputInfo:
    seed: int = field(default_factory=int)
    prompt: str = field(default_factory=str)
    prompt_enhanced: str = field(default_factory=str)
    negative_prompt: str = field(default_factory=str)
    image_path: str = field(default_factory=str)
    image_strength: float = field(default_factory=float)
    save_result_path: str = field(default_factory=str)
    return_result_tensor: bool = field(default_factory=lambda: False)
    # shape related
    resize_mode: str = field(default_factory=str)
    original_shape: list = field(default_factory=list)
    resized_shape: list = field(default_factory=list)
    latent_shape: list = field(default_factory=list)
    target_shape: list = field(default_factory=list)


@dataclass
class WorldPlayI2VInputInfo:
    """Input info for WorldPlay model (image-to-video with action/pose conditioning)."""

    seed: int = field(default_factory=int)
    prompt: str = field(default_factory=str)
    prompt_enhanced: str = field(default_factory=str)
    negative_prompt: str = field(default_factory=str)
    image_path: str = field(default_factory=str)
    save_result_path: str = field(default_factory=str)
    return_result_tensor: bool = field(default_factory=lambda: False)
    # shape related
    resize_mode: str = field(default_factory=str)
    original_shape: list = field(default_factory=list)
    resized_shape: list = field(default_factory=list)
    latent_shape: list = field(default_factory=list)
    target_shape: list = field(default_factory=list)
    # WorldPlay-specific: pose/action conditioning
    pose: str = field(default_factory=str)  # Pose string (e.g., "w-3, right-0.5") or JSON path
    model_type: str = field(default_factory=lambda: "ar")  # "ar" (autoregressive) or "bi" (bidirectional)
    chunk_latent_frames: int = field(default_factory=lambda: 4)
    # Computed pose tensors (set during processing)
    viewmats: torch.Tensor = field(default_factory=lambda: None)
    Ks: torch.Tensor = field(default_factory=lambda: None)
    action: torch.Tensor = field(default_factory=lambda: None)


@dataclass
class WorldPlayT2VInputInfo:
    """Input info for WorldPlay model (text-to-video with action/pose conditioning)."""

    seed: int = field(default_factory=int)
    prompt: str = field(default_factory=str)
    prompt_enhanced: str = field(default_factory=str)
    negative_prompt: str = field(default_factory=str)
    save_result_path: str = field(default_factory=str)
    return_result_tensor: bool = field(default_factory=lambda: False)
    # shape related
    resize_mode: str = field(default_factory=str)
    latent_shape: list = field(default_factory=list)
    target_shape: list = field(default_factory=list)
    # WorldPlay-specific: pose/action conditioning
    pose: str = field(default_factory=str)  # Pose string (e.g., "w-3, right-0.5") or JSON path
    model_type: str = field(default_factory=lambda: "ar")  # "ar" (autoregressive) or "bi" (bidirectional)
    chunk_latent_frames: int = field(default_factory=lambda: 4)
    # Computed pose tensors (set during processing)
    viewmats: torch.Tensor = field(default_factory=lambda: None)
    Ks: torch.Tensor = field(default_factory=lambda: None)
    action: torch.Tensor = field(default_factory=lambda: None)


def init_empty_input_info(task):
    if task == "t2v":
        return T2VInputInfo()
    elif task == "i2v":
        return I2VInputInfo()
    elif task == "flf2v":
        return Flf2vInputInfo()
    elif task == "vace":
        return VaceInputInfo()
    elif task == "s2v":
        return S2VInputInfo()
    elif task == "rs2v":
        return RS2VInputInfo()
    elif task == "animate":
        return AnimateInputInfo()
    elif task == "t2i":
        return T2IInputInfo()
    elif task == "i2i":
        return I2IInputInfo()
    elif task == "t2av":
        return T2AVInputInfo()
    elif task == "i2av":
        return I2AVInputInfo()
    elif task == "worldplay_i2v":
        return WorldPlayI2VInputInfo()
    elif task == "worldplay_t2v":
        return WorldPlayT2VInputInfo()
    else:
        raise ValueError(f"Unsupported task: {task}")


def update_input_info_from_dict(input_info, data):
    for key in input_info.__dataclass_fields__:
        if key in data:
            setattr(input_info, key, data[key])


def update_input_info_from_object(input_info, obj):
    for key in input_info.__dataclass_fields__:
        if hasattr(obj, key):
            setattr(input_info, key, getattr(obj, key))


def get_all_input_info_keys():
    all_keys = set()

    current_module = inspect.currentframe().f_globals

    for name, obj in current_module.items():
        if inspect.isclass(obj) and name.endswith("InputInfo") and hasattr(obj, "__dataclass_fields__"):
            all_keys.update(obj.__dataclass_fields__.keys())

    return all_keys


# 创建包含所有InputInfo字段的集合
ALL_INPUT_INFO_KEYS = get_all_input_info_keys()